Learning From Data: MLE

Maximum Likelihood Estimators
Parameter Estimation

Common approach in statistics: use a parametric model of data:

Assume data set:

\[Bin(n, p), \quad Poisson(\lambda), \quad N(\mu, \sigma^2) \]

\[exp(\lambda), \quad Uniform(a, b) \]

But parameters are unknown!!! Need to estimate them.
Parameter Estimation

• Assuming sample x_1, x_2, \ldots, x_n is from a parametric distribution $f(x|\theta)$, estimate θ.

• E.g.: Given sample HHTTTTTHTHTTTTHH of (possibly biased) coin flips, estimate

• $\theta = \text{probability of Heads}$

$f(x|\theta)$ is the Bernoulli probability mass function with parameter θ
Likelihood

• \(P(x \mid \theta) \): Probability of event \(x \) given model \(\theta \)
• Viewed as a function of \(x \) (fixed \(\theta \)), it’s a probability
 • E.g., \(\sum_x P(x \mid \theta) = 1 \)
• Viewed as a function of \(\theta \) (fixed \(x \)), it’s a likelihood
 • E.g., \(\sum_\theta P(x \mid \theta) \) can be anything; relative values of interest.
 E.g., if \(\theta = \) prob of heads in a sequence of coin flips then
 \[
P(\text{HHTHH} \mid .6) > P(\text{HHTHH} \mid .5),
\]
 I.e., event HHTHH is more likely when \(\theta = .6 \) than \(\theta = .5 \)
 • And what \(\theta \) make HHTHH most likely?
Likelihood Function

- $P(\text{HHTHH} | \theta)$: Probability of HHTHH, given $P(H) = \theta$:

<table>
<thead>
<tr>
<th>θ</th>
<th>$\theta^4(1 - \theta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.0013</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0313</td>
</tr>
<tr>
<td>0.8</td>
<td>0.0819</td>
</tr>
<tr>
<td>0.95</td>
<td>0.0407</td>
</tr>
</tbody>
</table>

The graph shows the likelihood function $P(\text{HHTHH} | \theta)$ with the maximum value at $\theta = 0.7$.
Maximum Likelihood Parameter Estimation

• One (of many) approaches to param. est.

• Likelihood of (indp) observations x_1, x_2, \ldots, x_n

$$L(x_1, x_2, \ldots, x_n | \theta) = \prod_{i=1}^{n} f(x_i | \theta)$$

• As a function of θ, what θ maximizes the likelihood of the data actually observed

• Typical approach: $\frac{\partial}{\partial \theta} L(\bar{x} | \theta) = 0$ or $\frac{\partial}{\partial \theta} \log L(\bar{x} | \theta) = 0$
Example 1

• n coin flips, $x_1, x_2, ..., x_n$; n_0 tails, n_1 heads, $n_0 + n_1 = n$;
 $	heta =$ probability of heads

 $L(x_1, x_2, \ldots, x_n \mid \theta) = (1 - \theta)^{n_0} \theta^{n_1}$

 $\log L(x_1, x_2, \ldots, x_n \mid \theta) = n_0 \log(1 - \theta) + n_1 \log \theta$

 $\frac{\partial}{\partial \theta} \log L(x_1, x_2, \ldots, x_n \mid \theta) = \frac{-n_0}{1 - \theta} + \frac{n_1}{\theta}$

 Setting to zero and solving:

 $\hat{\theta} = \frac{n_1}{n}$

 (Also verify it’s max, not min, & not better on boundary)
Parameter Estimation

- Assuming sample x_1, x_2, \ldots, x_n is from a parametric distribution $f(x|\theta)$, estimate θ.
- E.g.: Given n normal samples, estimate mean & variance

\[
f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}
\]

\[
\theta = (\mu, \sigma^2)
\]
Ex2: I got data; a little birdie tells me it’s normal, and promises \(\sigma^2 = 1 \)
Which is more likely: (a) this?

\[\mu \text{ unknown, } \sigma^2 = 1 \]
Which is more likely: (b) or this?

\[\mu \text{ unknown, } \sigma^2 = 1 \]

\[\mu \pm 1 \]

Observed Data
Which is more likely: (c) or this?

\[
\mu \text{ unknown, } \sigma^2 = 1
\]
Which is more likely: (c) or this?

\(\mu \) unknown, \(\sigma^2 = 1 \)

Looks good by eye, but how do I optimize my estimate of \(\mu \)?
Ex. 2: \(x_i \sim N(\mu, \sigma^2), \sigma^2 = 1, \mu \text{ unknown} \)

\[
L(x_1, x_2, \ldots, x_n | \theta) = \prod_{1 \leq i \leq n} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x_i - \theta)^2}{2}}
\]

\[
\ln L(x_1, x_2, \ldots, x_n | \theta) = \sum_{1 \leq i \leq n} -\frac{1}{2} \ln 2\pi - \frac{(x_i - \theta)^2}{2}
\]

\[
\frac{d}{d\theta} \ln L(x_1, x_2, \ldots, x_n | \theta) = \sum_{1 \leq i \leq n} (x_i - \theta)
\]

And verify it’s max, not min & not better on boundary

\[
\hat{\theta} = \left(\sum_{1 \leq i \leq n} x_i \right) / n = \bar{x}
\]

Sample mean is MLE of population mean
Hmm ..., density ≠ probability

• So why is “likelihood” function equal to product of densities??

 • a) for maximizing likelihood, we really only care about relative likelihoods, and density captures that

• and/or

 • b) if density at x is \(f(x) \), for any small \(\delta > 0 \), the probability of a sample within \(\pm \delta / 2 \) of x is \(\approx \delta f(x) \), but \(\delta \) is constant \(\text{wrt } \theta \), so it just drops out of

\[
\frac{d}{d \theta} \log L(\ldots) = 0.
\]
Ex3: I got data; a little birdie tells me it’s normal (but does \textit{not} tell me σ^2)
Which is more likely: (a) this?

μ, σ^2 both unknown
Which is more likely: (b) or this?

\(\mu, \sigma^2 \) both unknown

\[\mu \pm 3 \]

Observed Data
Which is more likely: (c) or this?

\(\mu, \sigma^2 \) both unknown

\[\mu \pm 1 \]

Observed Data
Which is more likely: (d) or this?

μ, σ^2 both unknown

![Diagram showing a normal distribution with observed data points and the mean μ, plus or minus 0.5 standard deviations.](Image)
Which is more likely: (d) or this?

\(\mu, \sigma^2 \) both unknown

Looks good by eye, but how do I optimize my estimates of \(\mu \) & \(\sigma^2 \)?
Ex 3: $x_i \sim N(\mu, \sigma^2)$, μ, σ^2 both unknown
Ex 3: \(x_i \sim N(\mu, \sigma^2) \), \(\mu, \sigma^2 \) both unknown

\[
\ln L(x_1, x_2, \ldots, x_n | \theta_1, \theta_2) = \sum_{1 \leq i \leq n} -\frac{1}{2} \ln 2\pi \theta_2 - \frac{(x_i - \theta_1)^2}{2\theta_2}
\]

\[
\frac{\partial}{\partial \theta_1} \ln L(x_1, x_2, \ldots, x_n | \theta_1, \theta_2) = \sum_{1 \leq i \leq n} \frac{(x_i - \theta_1)}{\theta_2} = 0
\]

\[
\hat{\theta}_1 = \left(\sum_{1 \leq i \leq n} x_i \right) / n = \bar{x}
\]

Sample mean is MLE of population mean, again

In general, a problem like this results in 2 equations in 2 unknowns. Easy in this case, since \(\theta_2 \) drops out of the \(\partial / \partial \theta_1 = 0 \) equation.
Ex. 3, (cont.)

\[
\ln L(x_1, x_2, \ldots, x_n \mid \theta_1, \theta_2) = \sum_{1 \leq i \leq n} \left(-\frac{1}{2} \ln 2\pi \theta_2 - \frac{(x_i - \theta_1)^2}{2\theta_2}\right)
\]

\[
\frac{\partial}{\partial \theta_2} \ln L(x_1, x_2, \ldots, x_n \mid \theta_1, \theta_2) = \sum_{1 \leq i \leq n} \left(-\frac{1}{2} \frac{2\pi}{2\pi \theta_2} + \frac{(x_i - \theta_1)^2}{2\theta_2^2}\right) = 0
\]

\[
\hat{\theta}_2 = \left(\sum_{1 \leq i \leq n} (x_i - \hat{\theta}_1)^2\right) / n = \bar{s}^2
\]

Sample variance is MLE of population variance
Summary

• MLE is one way to estimate parameters from data
• You choose the form of the model (normal, binomial, ...)
• Math chooses the value(s) of parameter(s)
• Has the intuitively appealing property that the parameters maximize the likelihood of the observed data; basically just assumes your sample is “representative”