Conditional Expectation

Expected value of random variable X given event A

$$
E(X \mid A)=\sum_{x \in \operatorname{Range}(X)} x \operatorname{Pr}(X=x \mid A)
$$

Law of Total Expectation (example)

49.8\% of population male

Average height 5'II" (men) 5'5" (female)

$$
\begin{aligned}
E(H) & =E(H \mid M) \operatorname{Pr}(M)+E(H \mid F) \operatorname{Pr}(F) \\
& =5 \frac{11}{12} \cdot 0.498+5 \frac{5}{12} \cdot 0.502
\end{aligned}
$$

Law of Total Expectation

X random variable on a sample space S
$A_{1}, A_{2}, \ldots, A_{k} \quad$ partition of S

$$
\begin{aligned}
E(X) & =\sum_{i} E\left(X \mid A_{i}\right) \operatorname{Pr}\left(A_{i}\right) \\
& =\sum_{i} \sum_{x} x \operatorname{Pr}\left(X=x \mid A_{i}\right) \operatorname{Pr}\left(A_{i}\right) \\
& =\sum_{x} \sum_{i} x \operatorname{Pr}\left(X=x \mid A_{i}\right) \operatorname{Pr}\left(A_{i}\right) \\
& =\sum_{x} x \sum_{i} \operatorname{Pr}\left(X=x \mid A_{i}\right) \operatorname{Pr}\left(A_{i}\right) \\
& =\sum_{i} x \operatorname{Pr}(X=x)
\end{aligned}
$$

Law of Total Expectation : Application

System that fails in step i independently with probability p X \# steps to fail

$\mathrm{E}(X)$?

Let A be the event that system fails in first step.

$$
\begin{aligned}
E(X) & =E(X \mid A) \operatorname{Pr}(A)+E(X \mid \bar{A}) \operatorname{Pr}(\bar{A}) \\
& =p+(1+E(X))(1-p) \\
& =1+(1-p) E(X) \\
E(X) & =\frac{1}{p}
\end{aligned}
$$

Law of Total Expectation : Example

A miner is trapped in a mine containing 3 doors.

- The $I^{\text {st }}$ door leads to a tunnel that will take him to safety after 3 hours.
- The $2^{\text {nd }}$ door leads to a tunnel that returns him to the mine after 5 hours.
- The $3^{\text {rd }}$ door leads to a tunnel that returns him to the mine after 7 hours.

At all times, he is equally likely to choose any one of the doors.

E(time to reach safety) ?

Problem

The number of people who enter an elevator on the ground floor is a Poisson random variable with mean IO. If there are N floors above the ground floor, and if each person is equally likely to get off at any one of the N floors, independently of where the others get off, compute the expected number of stops that the elevator will make before discharging all the passengers.

Game of Craps

- Begin by rolling an ordinary pair of dice
- If the sum of dice is 2,3 or I 2 , the player loses
- If the sum of dice is 7 or II, the player wins
- If it is any other number, say k, the player continues to roll the dice until the sum is either 7 or k.
- If it is 7 , the player loses.
- If it is k, the player wins.

Let R denote the number of rolls of the dice in a game of craps.

- What is $E(R)$?
- What is $E(R$ | player wins $)$?
- What is $E(R \mid$ player loses $)$?

