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continuous random variables

Discrete random variable: takes values in a finite or countable
set, e.g.
X e {l,2, ..., 6} with equal probability

X is positive integer i with probability 2-

Continuous random variable: takes values in an uncountable
set, e.g.
X is the weight of a random person (a real number)
X is a randomly selected point inside a unit square
X is the waiting time until the next packet arrives at the
server




pdf and cdf

f(x) : the probability density function (or simply “density”)

AN

F(a) = [0, f(x) dx

b

P(X =< a) = F(x): the cumulative distfibution function (or simply
“distribution”)

Pa< X =< b) =F(b) - F(a)

Need f(x)=0, & [ *f(x) dx (= F(+)) = I
A key relationship:

f(x) = 2 F(x),since F(a) = [°_f(x) dx,

a b




densities

Densities are not probabilities
P(X=a)=P(a < X <2a)=F@a)-F(a) =0

l.e., the probability that a continuous random variable falls at a
specified point is zero

Pa-€R2 <X <a+¢€2)=

F(a + €/2) - F(a - €/2)

~ o f(a) a-€/2 a ate/2

l.e., The probability that it falls near that point is proportional to the
density; in a large random sample, expect more samples where density
is higher (hence the name “density”).




sums and integrals; expectation

Much of what we did with discrete r.v.s carries over almost
unchanged, with 2.... replaced by [...dx

E.g.
For discrete r.v. X, E[X] = 2x xp(X)

For continuous r.v. X, E[X] :/ x - f(x)dx

Why?
(a) We define it that way
(b) The probability that X falls “near” x, say within xtdx/2, is =f(x)dx,
so the “average” X should be = 2 xf(x)dx (summed over grid

points spaced dx apart on the real line) and the limit of that as
dx—0is [xf(x)dx




example
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properties of expectation

Linearity
E[aX+b] = aE[X]+b
E[X+Y] = E[X]+E[Y]

Functions of a random variable

E[g(X)] = J g()f(x)dx

still true, just as
for discrete

just as for discrete,
but w/integral




variance

Definition is same as in the discrete case
Var[X] = E[(X-M)?] where p = E[X]

|dentity still holds:
Var[X] = E[X?] - (E[X])’

proof “same”




example

1 for0<ax<1 |
Let = Il l i
°t f(@) { 0 elsewhere ¥

|£ F(x)
1
ElX] = !
o0 1 3 1 1
Elx? = /_mxzf(x)dx:[) =] =
Var[X] = B[X2 — (B[X])2=1 1= 1 (0~0.29)




continuous random variables: summary

Continuous random variable X has density f(x), and

Pr(a<X<b)/bf(a:)dx

F[X] :/_mx-f(x)daz




uniform random variable

X ~ Uni(a,P) is uniform in [¢,B] f(z) = «

2.0

1.5

f(x)
1.0

0.5

0.0

35 w€lafl

\O otherwise

The Uniform Density Function Uni(0.5,1.0)




uniform random variable

X ~ Uni((x’B) is uniform in [a,B] N The Uniform Density Function Uni(0.5,1.0)

f(x)

L X @7
Fa) = {M € o)

0 otherwise

D e e e e e e - - -
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—

PI‘(CL<X<5)/bf(a:)da:I )

if x<a<b=<Qp:

E[X]:/OO r- f(x)de = atp




