

continuous random variables

continuous random variables

Discrete random variable: takes values in a finite or countable set, e.g.

 $X \in \{1,2,...,6\}$ with equal probability

X is positive integer i with probability 2⁻ⁱ

Continuous random variable: takes values in an uncountable set, e.g.

X is the weight of a random person (a real number)

X is a randomly selected point inside a unit square

X is the waiting time until the next packet arrives at the server

pdf and cdf

f(x): the probability density function (or simply "density")

 $P(X \le a) = F(x)$: the cumulative distribution function (or simply "distribution")

$$P(a < X \le b) = F(b) - F(a)$$

Need $f(x) \ge 0$, & $\int_{-\infty}^{+\infty} f(x) dx$ (= $F(+\infty)$) = I A key relationship:

$$f(x) = \frac{d}{dx} F(x)$$
, since $F(a) = \int_{-\infty}^{a} f(x) dx$,

Densities are *not* probabilities

$$P(X = a) = P(a \le X \le a) = F(a)-F(a) = 0$$

I.e., the probability that a continuous random variable falls at a specified point is zero

$$P(a - \epsilon/2 \le X \le a + \epsilon/2) =$$

$$F(a + \epsilon/2) - F(a - \epsilon/2)$$

$$\approx \epsilon \cdot f(a)$$

I.e., The probability that it falls *near* that point is proportional to the density; in a large random sample, expect more samples where density is higher (hence the name "density").

sums and integrals; expectation

Much of what we did with discrete r.v.s carries over almost unchanged, with Σ_{x} ... replaced by $\int ... dx$

E.g.

For discrete r.v. X,
$$E[X] = \sum_{x} xp(x)$$
 For continuous r.v. X,
$$E[X] = \int_{-\infty}^{\infty} x \cdot f(x) \, dx$$

Why?

- (a) We define it that way
- (b) The probability that X falls "near" x, say within $x\pm dx/2$, is $\approx f(x)dx$, so the "average" X should be $\approx \sum xf(x)dx$ (summed over grid points spaced dx apart on the real line) and the limit of that as $dx\rightarrow 0$ is $\int xf(x)dx$

example

Let
$$f(x) = \begin{cases} 1 & \text{for } 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$$

$$F(a) = \int_{-\infty}^{a} f(x)dx$$

$$= \begin{cases} 0 & \text{if } a \le 0 \\ a & \text{if } 0 < a \le 1 \text{ (since } a = \int_{0}^{a} 1 dx \text{)} \\ 1 & \text{if } 1 < a \end{cases}$$

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{1} x dx = \frac{x^{2}}{2} \Big|_{0}^{1} = \frac{1}{2}$$

$$E[X^{2}] = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{0}^{1} x^{2} dx = \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{1}{3}$$

$$Var[X] = E[X^2] - (E[X])^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12} \quad (\sigma \approx 0.29)$$

properties of expectation

Linearity

$$E[aX+b] = aE[X]+b$$

$$E[X+Y] = E[X]+E[Y]$$

still true, just as for discrete

Functions of a random variable

$$E[g(X)] = \int g(x)f(x)dx$$

just as for discrete, but w/integral

variance

Definition is same as in the discrete case

$$Var[X] = E[(X-\mu)^2]$$
 where $\mu = E[X]$

Identity still holds:

$$Var[X] = E[X^2] - (E[X])^2$$

proof "same"

example

f(x)

Let
$$f(x) = \begin{cases} 1 & \text{for } 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$$

$$F(a) = \int_{-\infty}^{a} f(x)dx$$

$$= \begin{cases} 0 & \text{if } a \le 0 \\ a & \text{if } 0 < a \le 1 \text{ (since } a = \int_{0}^{a} 1 dx \text{)} \\ 1 & \text{if } 1 < a \end{cases}$$

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{1} x dx = \frac{x^{2}}{2} \Big|_{0}^{1} = \frac{1}{2}$$

$$E[X^2] = \int_{-\infty}^{\infty} x^2 f(x) dx = \int_{0}^{1} x^2 dx = \frac{x^3}{3} \Big|_{0}^{1} = \frac{1}{3}$$

$$Var[X] = E[X^2] - (E[X])^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12} \quad (\sigma \approx 0.29)$$

continuous random variables: summary

Continuous random variable X has density f(x), and

$$\Pr(a \le X \le b) = \int_a^b f(x) \, dx$$

$$E[X] = \int_{-\infty}^{\infty} x \cdot f(x) \, dx$$

$$E[X^2] = \int_{-\infty}^{\infty} x^2 \cdot f(x) \, dx$$

uniform random variable

X ~ Uni(α,β) is uniform in [α,β]
$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & x \in [\alpha, \beta] \\ 0 & \text{otherwise} \end{cases}$$

The Uniform Density Function Uni(0.5,1.0)

uniform random variable

 $X \sim Uni(\alpha,\beta)$ is uniform in $[\alpha,\beta]$

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & x \in [\alpha, \beta] \\ 0 & \text{otherwise} \end{cases}$$

$$\Pr(a \le X \le b) = \int_{a}^{b} f(x) \, dx = \frac{b - a}{\beta - \alpha}$$
if $\alpha \le a \le b \le \beta$:

$$E[X] = \int_{-\infty}^{\infty} x \cdot f(x) \, dx = \frac{\alpha + \beta}{2}$$