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the law of large numbers & the CLT 
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sums of random variables 

If X,Y are independent, what is the distribution of  Z = X + Y ?	



Discrete case:	



  pZ(z) = Σx pX(x) • pY(z-x) 	



Continuous case:	



fZ(z) = ∫-∞   fX(x) • fY(z-x) dx	


	



W = X + Y + Z ?   Similar, but double sums/integrals	



	



V = W + X + Y + Z ?   Similar, but triple sums/integrals	



+∞	
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example 

	



If X and Y are uniform,  then Z = X + Y is not; it’s triangular:	



	



	



	



	



	



	



	



	



Intuition: X + Y ≈ 0 or ≈ 1 is rare, but many ways to get X + Y ≈ 0.5	
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“laws of large numbers” 

i.i.d. (independent, identically distributed) random vars 	


	


    X1, X2, X3, …	



Xi has μ = E[Xi] < ∞ and σ2 = Var[Xi]	



	



So limits as n→∞ do not exist (except in the degenerate case 
where μ = σ2 = 0;  note that if μ = 0, the center of the data 
stays fixed, but if σ2 > 0, then the spread grows with n).	
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weak law of large numbers 

i.i.d. (independent, identically distributed) random vars 	


	


    X1, X2, X3, …	


	


Xi has μ = E[Xi] < ∞ and σ2 = Var[Xi]	


	


Consider the sample mean:	



The Weak Law of Large Numbers: ���
    For any ε > 0, as n → ∞	



(There is a stronger form:  Strong Law of Large Numbers)	
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weak law of large numbers 

For any ε > 0, as n → ∞	



Proof: (assume σ2  < ∞)	



By Chebyshev inequality,	



n→∞	
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sample mean → population mean 

Xi ~ Unif(0,1)	


limn→∞ Σi=1 Xi/n→ μ=0.5 

n 
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sample mean → population mean 

μ±2σ	



Xi ~ Unif(0,1)	


limn→∞ Σi=1 Xi/n→ μ=0.5 
std dev(Σi=1 Xi/n) = 1/√12n 

n 

n 
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another example 
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another example 



11	



another example 
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the law of large numbers 

	



Justifies the “frequency” interpretation of probability	



Suppose that Pr(A) = p	



Consider independent trials in which event may or may not 
occur.  Let Xi be indicator for whether or not it occurs in ith 
trial.	



Law of Large numbers says relative frequency converges to p.	
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the law of large numbers 

Implications for gambler playing an unfair game:	



Each round bet one dollar that pays off $2 with probability 
0.49 and 0 with probability 0.51.  Expected payoff is  1*0.49 – 
1*0.51 = -$0.02	



Expected loss in one round not so bad.	



	



Law of large numbers says that in $n$ trials average loss will 
tend to -0.02.	



	



Large number of games: small average loss translates to 
HUGE accumulated loss with probability close to 1.	
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the law of large numbers 

	



Justifies the “frequency” interpretation of probability	



Does not justify:	



Gambler’s fallacy:  “I’m due for a win!”	



	



	



	



Many web demos, e.g. ���
  http://stat-www.berkeley.edu/~stark/Java/Html/lln.htm	
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normal random variable 

 X is a normal random variable   X ~ N(μ,σ2)	
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the central limit theorem (CLT) 

i.i.d. (independent, identically distributed) random vars	



   X1, X2, X3, …	



Xi has μ = E[Xi] < ∞ and σ2 = Var[Xi] < ∞	


As n → ∞, 	


	


	


  	



Restated:  As n → ∞,	
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CLT applies even to even wacky distributions 



19	



a good fit 	


(but relatively 
less good in 

extreme tails, 
perhaps)	
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CLT in the real world 

CLT is the reason many things appear normally distributed	


Many quantities = sums of (roughly) independent random vars	


	


Exam scores:  sums of individual problems	


People’s heights: sum of many genetic & environmental factors	


Measurements: sums of various small instrument errors	


...	


	





Where we go next 

•  Maximum likelihood estimation	



•  Next week: some fun applications of probability and statistics in 
computer science.	
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Machine Learning 

Machine Learning: algorithms that use “experience” to improve 
their performance 	



	



Can be applied in situations where it is very challenging (or 
impossible) to define the rules by hand: e.g.	



•  face detection 	



•  speech recognition 	



•  stock prediction	



•  driving a car	



•  medical diagnosis	
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Machine Learning 

Machine Learning: write programs with thousands/millions of 
undefined constants.	



	



Learn through experience how to set those constants.	



	



Machine learning algorithms are getting better and better and 
better…..	
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Example 4: Machine translation 
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Often use random variables to represent everything about the 
world	



	



Space of possible random variables and classifiers indexed by 
parameters  which are knobs we turn to create different 
classifiers.	



	



Learning:  the problem of estimating joint 
probability density functions, tuning the knobs, 
given samples from the function.	
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Why now? 

growing flood of online data	



	



recent progress in algorithms and theoretical foundations	



	



computational power	



	



never-ending industrial applications.	



31	




