the law of large numbers \& the CLT

$$
\operatorname{Pr}\left(\lim _{n \rightarrow \infty}\left(\frac{X_{1}+\cdots+X_{n}}{n}\right)=\mu\right)=1
$$

If X, Y are independent, what is the distribution of $Z=X+Y$?
Discrete case:

$$
\mathrm{pz}_{\mathrm{Z}}(z)=\Sigma_{x} \mathrm{px}(x) \cdot \operatorname{py}(z-x)
$$

Continuous case:

$W=X+Y+Z$? Similar, but double sums/integrals
$V=W+X+Y+Z$? Similar, but triple sums/integrals

example

If X and Y are uniform, then $Z=X+Y$ is not; it's triangular:

Intuition: $X+Y \approx 0$ or $\approx I$ is rare, but many ways to get $X+Y \approx 0.5$
i.i.d. (independent, identically distributed) random vars

$$
X_{1}, X_{2}, X_{3}, \ldots
$$

X_{i} has $\mu=\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]<\infty$ and $\sigma^{2}=\operatorname{Var}\left[\mathrm{X}_{\mathrm{i}}\right]$
$\mathrm{E}\left[\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}\right]=\mathrm{n} \mu$ and $\operatorname{Var}\left[\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}\right]=\mathrm{n} \sigma^{2}$

So limits as $\mathrm{n} \rightarrow \infty$ do not exist (except in the degenerate case where $\mu=\sigma^{2}=0$; note that if $\mu=0$, the center of the data stays fixed, but if $\sigma^{2}>0$, then the spread grows with n).
i.i.d. (independent, identically distributed) random vars

$$
X_{1}, X_{2}, X_{3}, \ldots
$$

X_{i} has $\mu=\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]<\infty$ and $\sigma^{2}=\operatorname{Var}\left[\mathrm{X}_{\mathrm{i}}\right]$
Consider the sample mean:

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

The Weak Law of Large Numbers:
For any $\varepsilon>0$, as $\mathrm{n} \rightarrow \infty$

$$
\operatorname{Pr}(|\bar{X}-\mu|>\epsilon) \longrightarrow 0
$$

(There is a stronger form: Strong Law of Large Numbers)

For any $\varepsilon>0$, as $\mathrm{n} \rightarrow \infty$

$$
\operatorname{Pr}(|\bar{X}-\mu|>\epsilon) \longrightarrow 0
$$

Proof: (assume $\sigma^{2}<\infty$)

$$
\begin{gathered}
E[\bar{X}]=E\left[\frac{X_{1}+\cdots+X_{n}}{n}\right]=\mu \\
\operatorname{Var}[\bar{X}]=\operatorname{Var}\left[\frac{X_{1}+\cdots+X_{n}}{n}\right]=\frac{\sigma^{2}}{n}
\end{gathered}
$$

By Chebyshev inequality,

$$
\operatorname{Pr}(|\bar{X}-\mu| \geq \epsilon) \leq \frac{\sigma^{2}}{n \epsilon^{2}} \xrightarrow{n \rightarrow \infty} 0
$$

sample mean \rightarrow population mean

sample mean \rightarrow population mean

another example

Justifies the "frequency" interpretation of probability
Suppose that $\operatorname{Pr}(A)=p$
Consider independent trials in which event may or may not occur. Let X_{i} be indicator for whether or not it occurs in $i^{\text {th }}$ trial.

Law of Large numbers says relative frequency converges to p.

Implications for gambler playing an unfair game:
Each round bet one dollar that pays off $\$ 2$ with probability 0.49 and 0 with probability 0.5 I . Expected payoff is $1 * 0.49-$ I*0.5I = -\$0.02

Expected loss in one round not so bad.

Law of large numbers says that in $\$ n \$$ trials average loss will tend to -0.02.

Large number of games: small average loss translates to HUGE accumulated loss with probability close to I.

Justifies the "frequency" interpretation of probability
Does not justify:
Gambler's fallacy: "I'm due for a win!"

Many web demos, e.g.
http://stat-www.berkeley.edu/~stark/Java/Html/lln.htm
X is a normal random variable $X \sim N\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
f(x) & =\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} \\
E[X] & =\mu \quad \operatorname{Var}[X]=\sigma^{2}
\end{aligned}
$$

i.i.d. (independent, identically distributed) random vars $X_{1}, X_{2}, X_{3}, \ldots$
X_{i} has $\mu=\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]<\infty$ and $\sigma^{2}=\operatorname{Var}\left[\mathrm{X}_{\mathrm{i}}\right]<\infty$
As $n \rightarrow \infty$,

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

Restated: As $n \rightarrow \infty$,

$$
\frac{X_{1}+X_{2}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \longrightarrow N(0,1)
$$

CLT applies even to even wacky distributions

CLT in the real world

CLT is the reason many things appear normally distributed
Many quantities = sums of (roughly) independent random vars
Exam scores: sums of individual problems
People's heights: sum of many genetic \& environmental factors
Measurements: sums of various small instrument errors

Where we go next

- Maximum likelihood estimation
- Next week: some fun applications of probability and statistics in computer science.

Machine Learning: algorithms that use "experience" to improve their performance

Can be applied in situations where it is very challenging (or impossible) to define the rules by hand: e.g.

- face detection
- speech recognition
- stock prediction
- driving a car
- medical diagnosis

Machine Learning: write programs with thousands/millions of undefined constants.

Learn through experience how to set those constants.

Machine learning algorithms are getting better and better and better.....

Example 1: hand-written digit recognition

Images are 28×28 pixels
Represent input image as a vector $\mathbf{x} \in \mathbb{R}^{784}$
Learn a classifier $f(\mathbf{x})$ such that,

$$
f: \mathbf{x} \rightarrow\{0,1,2,3,4,5,6,7,8,9\}
$$

Example 2: Face detection

- Need to classify an image window into three classes:
- non-face
- frontal-face
- profile-face

Example 3: Spam detection

From: Fannie Fritz <guadalajarae1 @ aspenrealtors.com>
Subject: US \$ $\mathbf{1 1 9 . 9 5}$ Viagra $\mathbf{5 0 m g} \mathbf{x} \mathbf{6 0}$ pills
Date: March 31, 2008 7:24:53 AM PDT (CA)
buy now Viagra (Sildenafil) $50 \mathrm{mg} \times 30$ pills
http://fullgray.com

- This is a classification problem
- Task is to classify email into spam/non-spam
- Data x_{i} is word count, e.g. of viagra, outperform, "you may be surprized to be contacted" ...

Example 4: Machine translation

```
Web Images Maps News Shopping Mail more V
Help
Translate
Home Text and Web
Translated Search Dictionary Tools
```


Translate text or webpage

What is the anticipated cost of collecting fees under the new proposal?

Example 5: Computational biology

X

AVITGACERDLQCG KGTCCAVSLWIKSV RVCTPVGTSGEDCH PASHKI PFSGQRMH HTCPCAPNLACVQT SPKKFKCLSK

Protein Structure and Disulfide Bridges
given sequence predict
3D structure
Protein: 1IMT
y

- Given "labeled data"

Temp.	BP.	Sore Throat	\ldots	Colour	diseaseX
35	95	Y	\ldots	Pale	No
22	110	N	\ldots	Clear	Yes
$:$	$:$			$:$	$:$
10	87	N	\ldots	Pale	No

- Learn CLASSIFIER, that can predict label of NEW instance

Temp	BP	Sore- Throat	\ldots	Color	diseaseX
32	90	N	\ldots	Pale	$?$

Often use random variables to represent everything about the world

Space of possible random variables and classifiers indexed by parameters which are knobs we turn to create different classifiers.

> Learning: the problem of estimating joint probability density functions, tuning the knobs, given samples from the function.
growing flood of online data
recent progress in algorithms and theoretical foundations
computational power
never-ending industrial applications.

