Probability/Density

the law of large numbers & the CLT
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sums of random variables

If X,Y are independent, what is the distribution of Z=X+Y?
Discrete case: \
pz(z) = 2x px(x) ® py(z-x)

Continuous case:

+00
fz(z) = J:oo fx(x) ® fy(z-x) dx
W=X+Y+Z? Similar, but double sums/integrals

V=W+X+Y+Z? Similar, but triple sums/integrals



Probability/Density
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If X and Y are uniform, then Z = X + Y is not; it’s triangular:
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Intuition: X + Y = 0 or = | is rare, but many ways to get X+ Y = 0.5
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laws of large numbers

i.i.d. (independent, identically distributed) random vars
Xp Xy, X5, .0
X. has (U = E[X] < wand 0?2 =Var[X]

E[>", Xi] = nu and Var[>_, Xi] = no?

So limits as n—o0 do not exist (except in the degenerate case
where U = 0% = 0; note that if it = 0, the center of the data
stays fixed, but if 02 > 0, then the spread grows with n).



weak law of large numbers

i.i.d. (independent, identically distributed) random vars
X Xy Xy, ...
X. has (4 = E[X] < wand 0?2 =Var[X]
1
Consider the sample mean: = —
P

The Weak Law of Large Numbers:
Forany € >0,asn = o

Pr(|X — p| >¢€) — 0.

(There is a stronger form: Strong Law of Large Numbers)



weak law of large numbers

Forany € >0,asn —> o
Pr(|X — p| >¢€) — 0.

Proof: (assume 0?2 < )

BX] = B[] = p

n

Var[X| = Var[21ttdn] — o’

n n
By Chebyshev inequality,

—_— 2 e

Pr(|X —p| > €) < 2




Sample i; Mean(1..i)

sample mean — population mean
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Sample i; Mean(1..i)

sample mean — population mean
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Sample i; Mean(1..i)

another example
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Sample i; Mean(1..i)

another example
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another example
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the law of large numbers

Justifies the “frequency” interpretation of probability

Suppose that Pr(A) = p

Consider independent trials in which event may or may not

occur. Let X be indicator for whether or not it occurs in it
trial.

Law of Large numbers says relative frequency converges to p.



the law of large numbers

Implications for gambler playing an unfair game:

Each round bet one dollar that pays off $2 with probability
0.49 and 0 with probability 0.51. Expected payoff is 1%0.49 —
1%0.51 = -$0.02

Expected loss in one round not so bad.

Law of large numbers says that in $n$ trials average loss will
tend to -0.02.

Large number of games: small average loss translates to
HUGE accumulated loss with probability close to |.



the law of large numbers

Justifies the “frequency” interpretation of probability

Does not justify:

1.0

Gambler’s fallacy: “I'm due for a win!”
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Many web demos, e.g.
http://stat-www.berkeley.edu/~stark/Java/Html/lin.htm




normal random variable

X is a normal random variable X ~ N(u,0?)
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the central limit theorem (CLT)

i.i.d. (independent, identically distributed) random vars
Xp Xy Xy, ...
X. has (1 = E[X] <wand 02 =Var[X] < w

As n = oo,
1 ( 02)
X2y xen (w %
T 1 Tl

Restated: As h — oo,

X1+ Xo4FX,, — \
1+ 2—;\/%- nuy /N(O,l)




1.0

0.8

0.6

04

0.2

T
0e00

T T T
G200 0200 SO0

Aysuagrhiungeqold

0100

S00°0

0000

CO0000CCOO

0O0CO0000COCO00COCO

O0CO0O0O0CO

1.0

0.8

04

0.2

0.0

T
Sv0°0

T T T
0v00 Se00 0€00

Aysuaqrfungeqold

G200

T
0200

x-bar

x-bar

0200

I T
SO0 0100

Aysuagrhingeqold

T
S000

T
G200

T
0200

T T
S00 0L00

Aysuagfyigeqold

S000

17

1.0

0.8

0.6

04

0.2

0.0

1.0

0.8

0.6

4

0

0.2

0.0



ibutions

1Str1

ies even to even wacky d

CLT appl

18

. o
| ©
o
o L ©
o
mo
&
o
X
. &,
o
o
. ©
o
I 1 T I I T T T I T I T
000 SZ00 0200 SLOO 000 SO00 0000 0200 5100 0100 5000 0000
Aysuag/Ayngeqold Aysuag/Ayngeqold
o - 2
]
o
o
— o
" o
c o @
o =
(o]
o
(o]
[¢]
(o]
© ©
ol o
(o]
o]
| <
[¢] [=]
]
o]
o
[¢]
(o]
o L N
o o
(o]
o F2
I 1 T I | I I | I I I T |
900 S00 v00 €00 200 00 000 5200 0zZ00 SL00 0100 5000 0000

Aysuaq/Anngeqold

Aysuag/Ayngeqold

1.0

0.8

06

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0



n=10

2N
Q
E >
po =
O o
O <«
gt
()
0
h

less good in

v
5%
e o
£ <
c 9O
& O
X
Q

|
¢i00

|
0L00

| | |
8000 8000 000

AisuaqrAyqeqold

|
¢000

|
0000

19

1.0

0.8

0.6

04

0.2

0.0



CLT in the real world

CLT is the reason many things appear normally distributed
Many quantities = sums of (roughly) independent random vars

Exam scores: sums of individual problems

People’s heights: sum of many genetic & environmental factors
Measurements: sums of various small instrument errors
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Where we go next

e Maximum likelihood estimation

* Next week: some fun applications of probability and statistics in
computer science.
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Machine Learning

Machine Learning: algorithms that use “experience” to improve
their performance

Can be applied in situations where it is very challenging (or
impossible) to define the rules by hand: e.g.

* face detection

* speech recognition
* stock prediction

* driving a car

* medical diagnosis

22



Machine Learning

Machine Learning: write programs with thousands/millions of
undefined constants.

Learn through experience how to set those constants.

Machine learning algorithms are getting better and better and
better.....

23



Example 1: hand-written digit recognition
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Images are 28 x 28 pixels

Represent input image as a vector x € R’84

Learn a classifier f(x) such that,

f:x—{0,1,2,3,4,5,6,7,8,9}
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Example 2: Face detection

* Need to classify an image window into three classes:

* non-face
* frontal-face

» profile-face

21|



Example 3: Spam detection

®o0e6 US §$ 119.95 Viagra 50mg x 60 pills — Junk
D E KNS &
Delete Not Junk Reply Reply All Forward Primt
‘ \, Mail thinks this message is Junk Mail. @ Load Images

From: Fannie Fritz <guadalajarae1 @aspenrealtors.com>

Subject: US $ 119.95 Viagra 50mg x 60 pills
Date: March 31, 2008 7:24:53 AM PDT (CA)

buy now Viagra (Sildenafil) 50mg x 30 pills
http:/fullgray.com

* This is a classification problem

* Task is to classify email into spam/non-spam

-

[ Not Junk

* Data x; is word count, e.g. of viagra, outperform, “you may be

surprized to be contacted” ...
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Example 4: Machine translation

Web |mages Maps News Shopping Mail more v Help
( ;OL gle Home Text and Web Translated Search Dictionary Tools
Translate
Translate text or webpage
Enter text or a webpage URL. Translation: French » English
En vertu des nouvelles propositicons, quel Under the new proposals, what is the cost of
est le colut prévu de perception des droits? collection of fees?
French~ > |English~v zwa Translate

&8 Suggest z better translation

Google Home - About Google Translate

©2009 Google

What is the anticipated
cost of collecting fees
under the new proposal?
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Example 5: Computational biology

AVITGACERDLQCG
KGTCCAVSLWIKSV
RVCTPVGTSGEDCH
PASHKIPFSGORMH :>
HTCPCAPNLACVQT
SPKKFKCLSK

Protein Structure and Disulfide Bridges

. given sequence predict
3D structure

Protein: 1IMT



= Given “labeled data”

Temp. | BP.

Colour

35 a5 Y Pale No
22 110 N Clear Yes

10 87 N Pale No

= Learn CLASSIFIER,
that can predict
label of NEW instance

Sore-

Temp BP ¢

32 90 N




Often use random variables to represent everything about the
world

Space of possible random variables and classifiers indexed by
parameters which are knobs we turn to create different
classifiers.

Learning: the problem of estimating joint
probability density functions, tuning the knobs,
given samples from the function.
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Why now?

growing flood of online data

recent progress in algorithms and theoretical foundations

computational power

never-ending industrial applications.
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