Prohahility

a zoo of (discrete) random variables
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uniform random variable

Takes each possible value, say {1..n} with equal probability.

Say random variable “uniform on S” if it takes each of the
values in S with equal probability.

Recall envelopes problem on homework...
Randomization is key!!
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bernoulli random variables

An experiment results in “Success” or “Failure”
X is a random indicator variable (1=success, O=failure)
P(X=l)=p and P(X=0)=1-p
X is called a Bernoulli random variable: X ~ Ber(p)
E[X] = E[X*]=p
Var(X) = E[X?] - (E[X])* = p — p* = p(I-p)

Examples:
coin flip
random binary digit

whether a disk drive crashed

Jacob (aka James, Jacques)
Bernoulli, 1654 — 1705
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binomial random variables

Consider n independent random variables Y; ~ Ber(p)
X = 2,Yiis the number of successes in n trials
X is a Binomial random variable: X ~ Bin(n,p)

n

P(X =1i) = (Z,)pi(l—p)n_i i=0,1,....n

By Binomial theorem, » P(X =i)=1
Examples 1=0
# of heads in n coin flips
# of I's in a randomly generated length n bit string

# of disk drive crashes in a 1000 computer cluster

E[X] = pn
Var(X) = p(l-p)n + (proof below, twice)
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binomial pmfs

PMF for X ~ Bin(10,0.5) PMF for X ~ Bin(10,0.25)
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P(X=k)
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mean and variance of the binomial
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where Y i1s a binomial random variable with parametersn — 1. p.

k=1 gives: E[X] =np ; k=2 gives E[X2]=np[(n-1)p+1]
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independent £.v.s

Two random variables X &Y are independent if for any two
sets of real numbers A and B

PriXeANYeB)=Pr(Xe€A):Pr(Y € B)
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products of ndependent t.v.s

Theorem: If X &Y are independent, then E[X*Y] = E[X]*E[Y]
Proof:

Let x;,v;,72 = 1,2,... be the possible values of X,Y".

EX Y] = Zin-yj-P(X:xi/\Y:yj)

?independence
(

1

sz”P(X:%:)' (Z%"P(ij))
_ E[X]-E[Y]

Note: NOT true in general; see earlier example E[X?]=#E[X]?
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variance of zndependent t.v.s is additive
(Bienaymé, 1853)

Theorem: If X &Y are independent, then
Var[X+Y] =Var[X]+Var[Y]

Proof:let X = X — E[X] Y = Y - E[Y]
E[X] = 0 EY] = 0
Var[X] = Var[X] VarlY] = Var[Y]

~ A~ VI"Xb=Zva
Var[X+> X+ = (9

= E[(X+Y)? - (E[X +Y)])?
— FE[X?+4+2XY +Y? -0
— E[X?+2E[XY]+ E[Y?]

= Var|X|+ 0+ VarlY]
=  Var|X|+ VarlY]

Var| X + Y]
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mean, variance of binomial r.v.s

If Y1,Y5,....,Y,, ~ Ber(p) and independent,
then X = > | Y; ~ Bin(n,p).

E[X] = E[Y, Yi] = nE[Y1] = np

Var[X] = Var]>_._, Y;] = nVar[Y1] = np(1 — p)
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disk failures

A RAID-like disk array consists of n drives,
each of which will fail independently with
probability p. Suppose it can operate
effectively if at least one-half of its
components function, e.g., by “majority vote.”
For what values of p is a 5-component system more likely to
operate effectively than a 3-component system?

X = # failed in 5-component system ~ Bin(5, p)
X3 = # failed in 3-component system ~ Bin(3, p)
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disk failures

X = # failed in 5-component system ~ Bin(5, p)
X3 = # failed in 3-component system ~ Bin(3, p)
P(5 component system effective) = P(Xs < 5/2)

(g)po(l —p)° + G)pl(l —p)*+ (Z)ﬁ(l —p)’
P(3 component system effective) = P(X3 < 3/2)

Calculation: 0.00 0.04 008

5-component system
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models & reality

Sending a bit string over the network
n = 4 bits sent, each corrupted with probability O. |
X = # of corrupted bits, X ~ Bin(4, 0.1)
In real networks, large bit strings (length n = 10%)
Corruption probability is very small:p = 10

Extreme n and p values arise in many cases

# bit errors in file written to disk
# of typos in a book

# of elements in particular bucket of large hash table
# of server crashes per day in giant data center

# facebook login requests sent to a particular server
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Poisson random variables

Suppose “events” happen, independently, at
an average rate of A per unit time. Let X be
the actual number of events happening in a
given time unit. Then X is a Poisson r.v. with
parameter A (denoted X ~ Poi(A)) and has

distribution (PMF):
P(X =i)=e

7!

Siméon Poisson, 1781-1840

Examples:
# of alpha particles emitted by a lump of radium in | sec.
# of traffic accidents in Seattle in one year
# of babies born in a day at UW Med center
# of visitors to my web page today

See B&T Section 6.2 for more on theoretical basis for Poisson.
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Poisson random variables

X is a Poisson r.v. with parameter A if it has PMF:

P(X =i) = e

2

s it a valid distribution? Recall Taylor series:

S PX =) =Y et e SN — e

0<z 0<1¢ 0<2
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expected value of Poisson t.v.s

. !

E 7 - e_>‘,—

, 7!
0<1 > i =0 term is zero

. A\

E 7 - e_>‘,—

7!

1<i

)\ < As expected, given definition
in terms of “average rate \”

(Var[X] = A, too; proof similar, see B&T example 6.20)
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binomial random variable is Poisson in the limit

Poisson approximates binomial when n is large, p is small,
and A = np is “moderate”

Formally, Binomial is Poisson in the limit as
n — oo (equivalently,p — 0) while holding np = A
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binomial — Poisson in the limit

X ~ Binomial(n,p)

A
Y

! ) n—1
: n.. é 1—é , Where A\ = pn
il(n—1)! \(n n
—A/n)"

—A/n)"

_J

A (
n' ( —A/n)’
(

l.e., Binomial = Poisson for large n, small p, moderate i, A.
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sending data on a network, again

Recall example of sending bit string over a network
Send bit string of length n = [0*
Probability of (independent) bit corruption is p = 10-¢
X ~ Poi(A = 10*10-¢=0.01)
What is probability that message arrives uncorrupted?

P(X =0) = e A2 = ¢~0010017 ) 990049834

UsingY ~ Bin(10%, 10-):
P(Y=0) ~ 0.990049829
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P(X=k)

binomial vs Poisson
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expectation and variance of a poisson

Recall: if Y ~ Bin(n,p), then:
E[Y] = pn

Var[Y] = np(l-p)

And if X ~ Poi(A\) where A = np (n =00, p = 0) then

E[X] =A =np=E[Y]

Var[X] = A = A(I-A/n) = np(l-p) =Var[Y]
Expectation and variance of Poisson are the same (A)
Expectation is the same as corresponding binomial
Variance almost the same as corresponding binomial

Note: when two different distributions share the same
mean & variance, it suggests (but doesn’t prove) that
one may be a good approximation for the other.
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geometric distribution

In a series X, Xy, ... of Bernoulli trials with success
probability p, letY be the index of the first success, i.e.,

Xi=X2=..= X, =0& Xy =1
ThenY is a geometric random variable with parameter p.

Examples:
Number of coin flips until first head
Number of blind guesses on SAT until | get one right
Number of darts thrown until you hit a bullseye
Number of random probes into hash table until empty slot
Number of wild guesses at a password until you hit it

P(Y=k) = (I-p)*'p; Mean |/p; Variance (I-p)/p?

67




balls in urns — the hypergeometric distribution
B&T, exercise 1.61

Draw d balls (without replacement) from an urn containing
N, of which w are white, the rest black. d ¢

Let X = number of white balls drawn
(D))
(3)

(note: n choose k=0 if k <0 or k > n)

P(X =) = i=01,....d

E[X] = dp, where p = w/N (the fraction of white balls)
proof: Let X; be 0/1 indicator for j-th ball is white, X = 2 X;
The X| are dependent, but E[X] = E[2 X] = 2 E[X{] = dp
Var[X] = dp(1-p)(1-(d-1)/(N-1))
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data mining

N =~ 22500 human genes, many of unknown function

Suppose in some experiment, d =1588 of them were observed (say,
they were all switched on in response to some drug)

A big question: What are they doing?

One idea: The Gene Ontology Consortium (www.geneontology.org)
has grouped genes with known functions into categories such as
“muscle development” or “immune system.” Suppose 26 of your d
genes fall in the “muscle development” category.

Just chance!
Or call Coach & see if he wants to dope some athletes!?

Hypergeometric: GO has | 16 genes in the muscle development
category. If those are the white balls among 22500 in an urn, what is
the probability that you would see 26 of them in 1588 draws!?
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Cao, et al., Developmental Cell 18, 662—674, April 20, 2010 data mining

Table 2. Gene Ontology Analysis on Differentially Bound Peaks in Myoblasts versus Myotubes

GO Categories Enriched in Genes Associated with Myotube-Increased Peaks

GOID Term ﬁ; Valug\ OR ﬁ)oun% /Sizex Ont®
G0:0005856 cytoskeleton 2.05E-11 2.40 w @ CC

G0:0043292 contractile fiber 6.98E-09 5.85 22 58 CC
GO:0030016 myofibril 1.96E-08 B 21 56 CC

G0:0044449 contractile fiber p 2.58E-08 587 20 52 CC
GO:0030017 Qarcnmera 4 QRF-NRK A NA 10 49 CC

co:0008092  probability of seeing this‘many genes from | wr

Q

G0O:0007519 o A . BP
conoisee & S€t Of thisTsize by chance accordingto
GO:0003779 the hypergeometric distribution. MF
G0:0006936 E.g.,if you draw 1588 balls from an urn containing 490 white balls BP
G0:0044430 and =22000 black balls, P(94 white) ~2.05x 10! CC
G0O:0031674 | band 2.27E-05 5.67 12 32 CC
G0:0003012 muscle system process 2.54E-05 4.11 16 52 BP
G0:0030029 actin filament-based process  2.89E-05 2.73 119 BP

GO:0007517 muscle development <506E-0-5> 2.69 < > (16 ) BP

A differentially bound peak was associated to the closest gene (unique Entrez ID) measured by distance to TSS
within CTCF flanking domains. OR: ratio of predicted to observed number of genes within a given GO category.
Count: number of genes with differentially bound peaks. Size: total number of genes for a given functional
group. Ont: the Geneontology. BP = biological process, MF = molecular function, CC = cellular component.
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joint distributions

Often care about 2 (or more) random variables simultaneously
measured X = height and Y = weight
X = cholesterol and Y = blood pressure
X1, X2, X3 = work loads on servers A, B, C

Joint probability mass function:
fxy(X,y) = P(X =x &Y =)

Joint cumulative distribution function:
Fxy(x,y) = P(X < x &Y <)
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examples

Two joint PMFs

Z1 | 2 3
| 224|224 | 2/24
2 | 224|224 224
3 | 224|224 | 224
4 | 224|224 | 2/24

X

l

Y

[
4/24
0

2 3

0

1/24 | 1/24
3124 | 3/24
4/24 | 2/24

P(W = Z) = 3%2/24 = 6/24
POX =Y) = (4 + 3 + 2)/24 = 9/24

NI WIDN

4/24

0 |2/24

Can look at arbitrary relationships between variables this

way
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marginal distributions

Two joint PMFs

Z

L2 | 3 || |x 2 | 3 | A
I | 224|224 | 2124 | 6/24 I | 424|124 | 1124 | 6/24
2 (2124|224 | 224 | 6124 2 | o |3n4]|324]|6n4
3 |2/24 | 224 | 224 | 6124 3 | o [424|2024] 604
4 (2124204224 | 624 4 424 0 |224]6/24

f(z) | 8124 | 8124 | 8124 fi(y) | 8124 | 8124 | 8/24

Marginal distribution of one r.vj'sum over the other:/
r(y) = 2xfxr(x,y) =" fx(x) = 2y fxr(x,y)

Question: Are W & Z independent! Are X &Y independent!
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independent variables

dependent variables Top row;

bottom row

-2 -

-3

-2

-4

-6

sampling from a (continuous) joint distribution

var(x)=1, var(y)=1, cov=0, n=1000

var(x)=1, var(y)=3, cov=0, n=1000

var(x)=1, var(y)=3, cov=0, n=100




expectation of a function

A function g(X,Y) defines a new random variable.

Its expectation is:

E[g(X, Y)] = 252y g(x, ¥) fxr(x,y)

Expectation is linear. l.e.,if g is linear:

ElglX,Y)|=ElaX+bY+cl=aE[X]|+bE[Y]+cC

Example: N 2 3
g(X,Y) = 2X-Y (1) 424) 0+ 1/24]-1 - 1124
E[g(X,Y)] = 72/24 = 3 2 | 3-024| 2-3/24] | < 3/24
E[g(X,Y)] = 2:2.5-2 =3 3 | 50024 4+4/24] 3224

4 | 7+4/24| 6+0/24| 5224
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random variables — summary

RV: a numeric function of the outcome of an experiment
Probability Mass Function p(x): prob that RV = x; 2p(x)=1
Cumulative Distribution Function F(x): probability that RV < x
Concepts generalize to joint distributions
Expectation:
of a random variable: E[X] = 2« xp(x)
of a function: ifY = g(X), then E[Y] = 2« g(x)p(X)
linearity:
E[aX + b] = aE[X] + b
E[X+Y] = E[X] + E[Y]; even if dependent

this interchange of “order of operations” is quite special to linear
combinations. E.g. E[XY]#E[X]*E[Y], in general (but see below)
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random variables — summary

Variance:
Var[X] = E[ (X-E[X])?] = E[X?] - (E[X])"]
Standard deviation: 0 = +/Var[X]
Var[aX+b] = a?Var[X]
If X &Y are independent, then
E[XY] = E[X]-E[Y];
Var[X+Y] =Var[X]+Var[Y]
(These two equalities hold for indp rv’s; but not in general.)
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random variables — summary

Important Examples:

Bernoulli: P(X=1) = p and P(X=0) = |-p u=p, 02=p(l-p)

Binomial: P(X =1) = (?)pi(l —p)"’ U = np, 02 = np(l-p)

Poisson: P(X =1i) = Q_A?—f U=A, O2=A
Bin(n,p) = Poi(A) where A = np fixed,n — 00 (and so p=A/n = 0)

Geometric P(X=k) = (I-p)«'p u=1/p,c%= (l-p)/p?

Many others, e.g., hypergeometric
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balls, urns and the supreme court

Supreme Court case: Berghuis v. Smith

If a group is underrepresented in a jury pool, how do you tell?

Justice Breyer [Stanford Alum] opened the questioning by
invoking the binomial theorem. He hypothesized a scenario
iInvolving “an urn with a thousand balls, and sixty are red,
and nine hundred forty are black, and then you select them
at random... twelve at a time.” According to Justice Breyer
and the binomial theorem, if the red balls were black jurors then
“you would expect... something like a third to a half of
juries would have at least one black person” on them.

- Justice Scalia’s rejoinder: “We don’t have any urns here.”
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Justice Breyer meets CSE 312

- Should model this combinatorially
- Ball draws not independent trials (balls not replaced)

- EXxact solution: 040" /(1000
P(draw 12 black balls) = | , 1» | =0.4739
P(draw = 1 red ball) = 1 — P(draw 12 black balls) ~ 0.5261

- Approximation using Binomial distribution
« Assume P(red ball) constant for every draw = 60/1000
« X=%#red balls drawn. X~ Bin(12, 60/1000 = 0.06)
« PX21)=1-P(X=0)~1-0.4759 =0.5240

In Breyer's description, should actually expect just over half
of juries to have at least one black person on them
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