Instructor: Anna R Karlin (karlin@cs.washington.edu)

Tas: Dimitrios Gklezakos

Stephen Jonany

Tom Guo

Kane Swanson
Course website
http://www.cs.washington.edu/312/

Calendar will have everything on it!
- Probability and statistics

- Books
 - Introduction to Probability (2nd ed.)
 Bertsekas and Tsitsiklis [required]
 - Discrete Mathematics and its Applications
 Rosen [optional]

- Slides
 Most are minor mutations of slides prepared by previous instructors of this course: James Lee, Larry Ruzzo, Pedro Domingos
- **Homeworks ~ 40%**
 Weekly (Out Wed eve, due Thursday in section)
 we will grade a random subset of problems.

- **Daily problem ~ 5-10%**
 shouldn’t take more than 10-20 minutes.
 due at the beginning of most classes.
 can skip it 4 times during the quarter.

- **Midterm & Final ~20% & 35%**

Lots of office hours, starting next week!
- **Probability**
 Counting
 Basic probability
 Conditional probability
 Random variables
 Discrete and continuous distributions
 Expectation and variance
 Tail bounds and the central limit theorem

- **Statistics**
 Maximum-likelihood estimation
 Bayesian estimation
 Hypothesis testing
 Linear regression
 Machine learning
You are trying to diagnose the probability that a woman with a positive mammogram has breast cancer, even though she’s in a low-risk group: 40-50 years old.

- Probability of a woman having breast cancer is 0.8%.
- If someone has cancer, probability of a positive mammogram is 90%.
- If someone doesn’t have cancer, probability of a positive mammogram is 7%.

A woman walks into your office with a positive test.

What’s the probability that she has breast cancer?
pretend you’re a lawyer

OJ simpson murder trial

Prosecutors:
“A slap is a prelude to homicide.”

Defense:
“Less than 1 in 2500 men who commit domestic abuse go on to commit homicide.”

Both were considering the wrong question:
If a woman is murdered and she has been domestically abused, the chances are 90% that her husband is the killer.
Bayes rule

\[\Pr[A \mid B] = \frac{\Pr[A \land B]}{\Pr[B]} \]
why this course is important

- Reasoning under uncertainty
- Understanding massive data
- Learning patterns
- Exposing liars and idiots
- Making $$$ without coding
- **Probability**
 - **Counting**
 - Basic probability
 - Conditional probability
 - Random variables
 - Discrete and continuous distributions
 - Expectation and variance
 - Tail bounds and the central limit theorem

- **Statistics**
 - Maximum-likelihood estimation
 - Bayesian estimation
 - Hypothesis testing
 - Linear regression
 - Machine learning