CSE 312
Autumn 2013

More on parameter estimation – Bias; and Confidence Intervals
Bias
Likelihood Function

\[P(\text{HHTHH} | \theta) : \]

Probability of HHTHH, given \(P(H) = \theta \):

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\theta^4 (1-\theta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.0013</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0313</td>
</tr>
<tr>
<td>0.8</td>
<td>0.0819</td>
</tr>
<tr>
<td>0.95</td>
<td>0.0407</td>
</tr>
</tbody>
</table>

Recall
Example 1

n coin flips, x_1, x_2, \ldots, x_n; n_0 tails, n_1 heads, $n_0 + n_1 = n$;

$\theta = \text{probability of heads}$

$$L(x_1, x_2, \ldots, x_n \mid \theta) = (1 - \theta)^{n_0} \theta^{n_1}$$

$$\log L(x_1, x_2, \ldots, x_n \mid \theta) = n_0 \log(1 - \theta) + n_1 \log \theta$$

$$\frac{\partial}{\partial \theta} \log L(x_1, x_2, \ldots, x_n \mid \theta) = \frac{-n_0}{1-\theta} + \frac{n_1}{\theta}$$

Setting to zero and solving:

$$\hat{\theta} = \frac{n_1}{n}$$

(Also verify it’s max, not min, & not better on boundary)
(un-) Bias

A desirable property: An estimator Y_n of a parameter θ is an *unbiased* estimator if

$$E[Y_n] = \theta$$

For coin ex. above, MLE is unbiased:

$Y_n = \text{fraction of heads} = (\sum_{1 \leq i \leq n} X_i)/n$,

($X_i = \text{indicator for heads in i}^{\text{th}} \text{ trial}$) so

$$E[Y_n] = (\sum_{1 \leq i \leq n} E[X_i])/n = n \theta/n = \theta$$

by linearity of expectation
Are all unbiased estimators equally good?

No!

E.g., “Ignore all but 1st flip; if it was H, let $Y_n' = 1$; else $Y_n' = 0$”

Exercise: show this is unbiased

Exercise: if observed data has at least one H and at least one T, what is the likelihood of the data given the model with $\theta = Y_n'$?
Ex 3: \(x_i \sim N(\mu, \sigma^2) \), \(\mu, \sigma^2 \) both unknown

\[
\ln L(x_1, x_2, \ldots, x_n | \theta_1, \theta_2) = \sum_{1 \leq i \leq n} -\frac{1}{2} \ln 2\pi \theta_2 - \frac{(x_i - \theta_1)^2}{2\theta_2}
\]

\[
\frac{\partial}{\partial \theta_1} \ln L(x_1, x_2, \ldots, x_n | \theta_1, \theta_2) = \sum_{1 \leq i \leq n} \frac{(x_i - \theta_1)}{\theta_2} = 0
\]

\[
\hat{\theta}_1 = \left(\sum_{1 \leq i \leq n} x_i \right) / n = \bar{x}
\]

Sample mean is MLE of population mean, again

In general, a problem like this results in 2 equations in 2 unknowns. Easy in this case, since \(\theta_2 \) drops out of the \(\partial / \partial \theta_1 = 0 \) equation.
Ex. 3, (cont.)

\[
\ln L(x_1, x_2, \ldots, x_n | \theta_1, \theta_2) = \sum_{1 \leq i \leq n} -\frac{1}{2} \ln 2\pi \theta_2 - \frac{(x_i - \theta_1)^2}{2\theta_2}
\]

\[
\frac{\partial}{\partial \theta_2} \ln L(x_1, x_2, \ldots, x_n | \theta_1, \theta_2) = \sum_{1 \leq i \leq n} -\frac{1}{2} \frac{2\pi}{2\pi \theta_2} + \frac{(x_i - \theta_1)^2}{2\theta_2} = 0
\]

\[
\hat{\theta}_2 = \left(\sum_{1 \leq i \leq n} (x_i - \hat{\theta}_1)^2 \right) / n = \bar{s}^2
\]

\text{Sample variance is MLE of population variance}
Ex. 3, (cont.)

Bias? If $Y_n = (\Sigma_{1 \leq i \leq n} X_i)/n$ is the sample mean then $E[Y_n] = (\Sigma_{1 \leq i \leq n} E[X_i])/n = n \mu/n = \mu$

so the MLE is an \textit{unbiased} estimator of population mean.

Similarly, $(\Sigma_{1 \leq i \leq n} (X_i - \mu)^2)/n$ is an unbiased estimator of σ^2.

Unfortunately, if μ is \textit{unknown}, estimated \textit{from the same data}, as above, $\hat{\theta}_2 = \sum_{1 \leq i \leq n} \frac{(x_i - \hat{\theta}_1)^2}{n}$ is a consistent, but \textit{biased} estimate of population variance. (An example of \textit{overfitting}.)

Unbiased estimate (B&T p467): \[
\hat{\theta}'_2 = \sum_{1 \leq i \leq n} \frac{(x_i - \hat{\theta}_1)^2}{n-1}
\]

Roughly, $\lim_{n \to \infty}$ = correct

One Moral: MLE is a great idea, but not a magic bullet.
More on Bias of $\hat{\theta}_2$

Biased? Yes. Why? As an extreme, think about $n = 1$. Then $\hat{\theta}_2 = 0$; probably an underestimate!

Also, consider $n = 2$. Then $\hat{\theta}_1$ is exactly between the two sample points, the position that exactly minimizes the expression for θ_2. Any other choices for θ_1, θ_2 make the likelihood of the observed data slightly lower. But it’s actually pretty unlikely that two sample points would be chosen exactly equidistant from, and on opposite sides of the mean ($p=0$, in fact), so the MLE $\hat{\theta}_2$ systematically underestimates θ_2, i.e. is biased.

(But not by much, & bias shrinks with sample size.)
Confidence Intervals
A Problem With Point Estimates

Reconsider: estimate the mean of a normal distribution.

Sample X_1, X_2, \ldots, X_n

Sample mean $Y_n = (\sum_{1 \leq i \leq n} X_i)/n$ is an unbiased estimator of the population mean.

But with probability 1, it’s wrong!

Can we say anything about *how* wrong?

E.g., could I find a value Δ s.t. I’m 95% confident that the true mean is within $\pm \Delta$ of my estimate?
Confidence Intervals for a Normal Mean

Assume X_i’s are i.i.d. \simNormal(μ, σ^2)

Mean estimator $Y_n = (\sum_{1 \leq i \leq n} X_i)/n$ is a random variable; it has a distribution, a mean and a variance. Specifically,

$$Var(Y_n) = Var\left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = \frac{1}{n^2} \sum_{i=1}^{n} Var(X_i) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

So, $Y_n \sim$ Normal($\mu, \sigma^2/n$), $\therefore \frac{Y_n - \mu}{\sigma/\sqrt{n}} \sim$ Normal(0, 1)
Confidence Intervals for a Normal Mean

\(X_i\)'s are i.i.d. \(\sim\) Normal(\(\mu, \sigma^2\))

\(Y_n \sim\) Normal(\(\mu, \sigma^2/n\)) \quad \frac{Y_n - \mu}{\sigma/\sqrt{n}} \sim\) Normal(0, 1)

\[
P \left(-z < \frac{Y_n - \mu}{\sigma/\sqrt{n}} < z \right) = 1 - 2\Phi(-z)
\]

\[
P \left(-z < \frac{\mu - Y_n}{\sigma/\sqrt{n}} < z \right) = 1 - 2\Phi(-z)
\]

\[
P \left(-z\sigma/\sqrt{n} < \mu - Y_n < z\sigma/\sqrt{n} \right) = 1 - 2\Phi(-z)
\]

\[
P \left(Y_n - z\sigma/\sqrt{n} < \mu < Y_n + z\sigma/\sqrt{n} \right) = 1 - 2\Phi(-z)
\]

E.g., true \(\mu\) within \(\pm 1.96\sigma/\sqrt{n}\) of estimate \(\sim\) 95% of time

N.B: \(\mu\) is fixed, not random; \(Y_n\) is random
C.I. of Norm Mean When σ^2 is Unknown?

X_i’s are i.i.d. normal, mean = μ, variance = σ^2 unknown

$Y_n = (\sum_{1 \leq i \leq n} X_i)/n$ is normal

$(Y_n - \mu)/(\sigma / \sqrt{n})$ is std normal, but we don’t know μ, σ

Let $S_n^2 = \sum_{1 \leq i \leq n} (X_i - Y_n)^2/(n-1)$, the unbiased variance est

$(Y_n - \mu)/(S_n / \sqrt{n})$?

Independent of μ, σ^2, but NOT normal:
“Students’ t-distribution with n-1 degrees of freedom”
Student's t-distribution

Symmetric
Mean 0

“Heavy-tailed”

One parameter:
“degrees of freedom”
(control variance)

Approximately normal for large n,
but the difference is very important for small sample sizes.
William Gossett
aka
“Student”

Worked for A. Guinness & Son, investigating, e.g., brewing and barley yields. Guinness didn’t allow him to publish under his own name, so this important work is tied to his pseudonym…

Student, "The probable error of a mean". *Biometrika* 1908.
Letting Ψ_{n-1} be the c.d.f. for the t-distribution with n-1 degrees of freedom, as above we have:

\[
P \left(-z < \frac{Y_n - \mu}{S_n/\sqrt{n}} < z \right) = 1 - 2\Psi_{n-1}(-z)
\]

\[
P \left(-z < \frac{\mu - Y_n}{S_n/\sqrt{n}} < z \right) = 1 - 2\Psi_{n-1}(-z)
\]

\[
P \left(-zS_n/\sqrt{n} < \mu - Y_n < zS_n/\sqrt{n} \right) = 1 - 2\Psi_{n-1}(-z)
\]

\[
P \left(Y_n - zS_n/\sqrt{n} < \mu < Y_n + zS_n/\sqrt{n} \right) = 1 - 2\Psi_{n-1}(-z)
\]

E.g., for n=10, 95% interval, use $z \approx 2.26$, vs 1.96
What about non-normal

If X_1, X_2, \ldots, X_n are *not* normal, you can still get approximate confidence intervals, based on the central limit theorem.

I.e., $Y_n = (\sum_{1 \leq i \leq n} X_i)/n$ is *approximately* normal with unknown mean and *approximate* variance

$S_n^2 = \sum_{1 \leq i \leq n} (X_i - Y_n)^2/(n-1)$, and

$(Y_n - \mu)/(S_n/\sqrt{n})$ is *approximately* t-distributed, so

$P \left(Y_n - zS_n/\sqrt{n} < \mu < Y_n + zS_n/\sqrt{n} \right) \approx 1 - 2\Psi_{n-1}(-z)$