CSE 312
Autumn 2013
Maximum Likelihood Estimators
and the EM algorithm
Outline

MLE: Maximum Likelihood Estimators

EM: the Expectation Maximization Algorithm
Learning From Data: MLE

Maximum Likelihood Estimators
Parameter Estimation

Given: independent samples $x_1, x_2, ..., x_n$ from a parametric distribution $f(x|\theta)$

Goal: estimate θ.

E.g.: Given sample HHTTTTTHTHTTTTHH of (possibly biased) coin flips, estimate $\theta = \text{probability of Heads}$

$f(x|\theta)$ is the Bernoulli probability mass function with parameter θ
P(x | \theta): Probability of event x given model \theta

Viewed as a function of x (fixed \theta), it’s a probability
E.g., \sum_x P(x | \theta) = 1

Viewed as a function of \theta (fixed x), it’s called likelihood
E.g., \sum_{\theta} P(x | \theta) can be anything; relative values of interest.
E.g., if \theta = prob of heads in a sequence of coin flips then
\quad P(HHTHH | .6) > P(HHTHH | .5),
I.e., event HHTHH is more likely when \theta = .6 than \theta = .5

And what \theta make HHTHH most likely?
Likelihood Function

\[P(\text{HHTHH} \mid \theta) : \]

Probability of HHTHH, given \(P(H) = \theta \):

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\theta^4(1-\theta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.0013</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0313</td>
</tr>
<tr>
<td>0.8</td>
<td>0.0819</td>
</tr>
<tr>
<td>0.95</td>
<td>0.0407</td>
</tr>
</tbody>
</table>

max

![Graph](attachment:image.png)
Maximum Likelihood Parameter Estimation

One (of many) approaches to param. est.

Likelihood of (indp) observations \(x_1, x_2, \ldots, x_n\)

\[
L(x_1, x_2, \ldots, x_n \mid \theta) = \prod_{i=1}^{n} f(x_i \mid \theta)
\]

As a function of \(\theta\), what \(\theta\) maximizes the likelihood of the data actually observed

Typical approach: \(\frac{\partial}{\partial \theta} L(\bar{x} \mid \theta) = 0\) or \(\frac{\partial}{\partial \theta} \log L(\bar{x} \mid \theta) = 0\)
Example 1

n independent coin flips, x_1, x_2, \ldots, x_n; n_0 tails, n_1 heads, $n_0 + n_1 = n$; $\theta =$ probability of heads

\[
L(x_1, x_2, \ldots, x_n \mid \theta) = (1 - \theta)^{n_0} \theta^{n_1}
\]

\[
\log L(x_1, x_2, \ldots, x_n \mid \theta) = n_0 \log(1 - \theta) + n_1 \log \theta
\]

\[
\frac{\partial}{\partial \theta} \log L(x_1, x_2, \ldots, x_n \mid \theta) = \frac{-n_0}{1 - \theta} + \frac{n_1}{\theta}
\]

Setting to zero and solving:

\[
\hat{\theta} = \frac{n_1}{n}
\]

(Also verify it’s max, not min, & not better on boundary)

Observed fraction of successes in sample is MLE of success probability in population
Parameter Estimation

Given: indp samples $x_1, x_2, ..., x_n$ from a parametric distribution $f(x|\theta)$, estimate: θ.

E.g.: Given n normal samples, estimate mean & variance

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$$

$$\theta = (\mu, \sigma^2)$$
Ex2: I got data; a little birdie tells me it’s normal, and promises $\sigma^2 = 1$
Which is more likely: (a) this?

\[\mu \text{ unknown, } \sigma^2 = 1 \]
Which is more likely: (b) or this?

\[\mu \text{ unknown, } \sigma^2 = 1 \]
Which is more likely: (c) or this?

\(\mu \) unknown, \(\sigma^2 = 1 \)

Observed Data

\(\mu \pm 1 \)
Which is more likely: (c) or this?

\[\mu \text{ unknown, } \sigma^2 = 1 \]

Looks good by eye, but how do I optimize my estimate of \(\mu \)?
Ex. 2: \(x_i \sim N(\mu, \sigma^2), \ \sigma^2 = 1, \ \mu \text{ unknown} \)

\[
L(x_1, x_2, \ldots, x_n | \theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x_i - \theta)^2}{2}}
\]

\[
\ln L(x_1, x_2, \ldots, x_n | \theta) = \sum_{i=1}^{n} -\frac{1}{2} \ln(2\pi) - \frac{(x_i - \theta)^2}{2}
\]

\[
\frac{d}{d\theta} \ln L(x_1, x_2, \ldots, x_n | \theta) = \sum_{i=1}^{n} (x_i - \theta)
\]

And verify it’s max, not min & not better on boundary

\[
\hat{\theta} = \left(\sum_{i=1}^{n} x_i \right) / n = \bar{x}
\]

Sample mean is MLE of population mean
Hmm ..., density ≠ probability

So why is “likelihood” function equal to product of densities?? (Prob of seeing any specific x_i is 0, right?)

a) for maximizing likelihood, we really only care about relative likelihoods, and density captures that

b) has desired property that likelihood increases with better fit to the model

and/or

c) if density at x is $f(x)$, for any small $\delta > 0$, the probability of a sample within $\pm \delta/2$ of x is $\approx \delta f(x)$, but δ is constant wrt θ, so it just drops out of $d/d\theta \log L(\ldots) = 0$.
Ex3: I got data; a little birdie tells me it’s normal (but does not tell me μ, σ^2)
Which is more likely: (a) this?

μ, σ^2 both unknown

Observed Data
Which is more likely: (b) or this?

\[\mu, \sigma^2 \text{ both unknown} \]
Which is more likely: (c) or this?

μ, σ^2 both unknown

Observed Data
Which is more likely: (d) or this?

μ, σ² both unknown

Observed Data

μ ± 0.5
Which is more likely: (d) or this?

\[\mu, \sigma^2 \text{ both unknown} \]

Looks good by eye, but how do I optimize my estimates of \(\mu \) & \(\sigma^2 \)?
Ex 3: \(x_i \sim N(\mu, \sigma^2) \), \(\mu, \sigma^2 \) both unknown

\[
\ln L(x_1, x_2, \ldots, x_n | \theta_1, \theta_2) = \sum_{i=1}^{n} -\frac{1}{2} \ln(2\pi\theta_2) - \frac{(x_i - \theta_1)^2}{2\theta_2}
\]

\[
\frac{\partial}{\partial \theta_1} \ln L(x_1, x_2, \ldots, x_n | \theta_1, \theta_2) = \sum_{i=1}^{n} \frac{(x_i - \theta_1)}{\theta_2} = 0
\]

\[
\hat{\theta}_1 = \left(\sum_{i=1}^{n} x_i \right) / n = \bar{x}
\]

Sample mean is MLE of population mean, again

In general, a problem like this results in 2 equations in 2 unknowns. Easy in this case, since \(\theta_2 \) drops out of the \(\partial / \partial \theta_1 = 0 \) equation.
Ex. 3, (cont.)

\[
\ln L(x_1, x_2, \ldots, x_n | \theta_1, \theta_2) = \sum_{i=1}^{n} -\frac{1}{2} \ln(2\pi \theta_2) - \frac{(x_i - \theta_1)^2}{2\theta_2}
\]

\[
\frac{\partial}{\partial \theta_2} \ln L(x_1, x_2, \ldots, x_n | \theta_1, \theta_2) = \sum_{i=1}^{n} -\frac{1}{2} \frac{2\pi}{2\pi \theta_2} + \frac{(x_i - \theta_1)^2}{2\theta_2^2} = 0
\]

\[
\hat{\theta}_2 = \left(\sum_{i=1}^{n} (x_i - \hat{\theta}_1)^2 \right) / n = \bar{s}^2
\]

Sample variance is MLE of population variance
MLE is one way to estimate parameters from data.

You choose the form of the model (normal, binomial, ...)

Math chooses the value(s) of parameter(s)

Has the intuitively appealing property that the parameters maximize the likelihood of the observed data; basically just assumes your sample is “representative”

Of course, unusual samples will give bad estimates (estimate normal human heights from a sample of NBA stars?) but that is an unlikely event.

Often, but not always, MLE has other desirable properties like being unbiased, or at least consistent.