8. Average-Case Analysis of Algorithms + Randomized Algorithms
for i = 2 ... n-1 {
 T = A[i]
 j = i-1
 while j >= 0 && T < A[j] {
 A[j] = T
 j = j-1
 }
 A[j+1] = T
}
Run Time

Worst Case: $O(n^2)$

($\sim n^2$ swaps; \#compares = \#swaps + n - 1)

“Average Case”

? What’s an “average” input?

One idea (and about the only one that is analytically tractable): assume all $n!$ permutations of input are equally likely.
permutations & inversions

A permutation $\pi = (\pi_1, \pi_2, \ldots, \pi_n)$ of 1, ..., n is simply a list of the numbers between 1 and n, in some order.

(i,j) is an inversion in π if $i < j$ but $\pi_i > \pi_j$

E.g.,

$$\pi = (3, 5, 1, 4, 2)$$

has six inversions: (1,3), (1,5), (2,3), (2,4), (2,5), and (4,5)

Min possible: 0: $\pi = (1, 2, 3, 4, 5)$

Max possible: n choose 2: $\pi = (5, 4, 3, 2, 1)$

Obviously, the goal of sorting is to remove inversions
Swapping an adjacent pair of positions that are out-of-order decreases the number of inversions by exactly 1. So..., number of swaps performed by insertion sort is exactly the number of inversions present in the input.

Counting them:

a. worst case: n choose 2

b. average case:

$$I_{i,j} = \begin{cases}
1 & \text{if } (i, j) \text{ is an inversion} \\
0 & \text{if not}
\end{cases}$$

$$I = \sum_{i < j} I_{i,j}$$

$$E[I] = E \left[\sum_{i < j} I_{i,j} \right] = \sum_{i < j} E \left[I_{i,j} \right]$$
counting inversions

There is a 1-1 correspondence between permutations having inversion \((i,j)\) versus not:

\[
\pi \begin{pmatrix} \cdots & a & \cdots & b & \cdots \end{pmatrix}
\]

\[
\pi' \begin{pmatrix} \cdots & b & \cdots & a & \cdots \end{pmatrix}
\]

So:

\[
E[I_{i,j}] = P(I_{i,j} = 1) = 1/2
\]

\[
E[I] = \sum_{i<j} E[I_{i,j}] = \sum_{i<j} \frac{1}{2} = \binom{n}{2} \cdot \frac{1}{2}
\]

Thus, the expected number of swaps in insertion sort is \(\binom{n}{2}/2\) versus \(\binom{n}{2}\) in worst-case. I.e.,

The average run time of insertion sort (assuming random input) is about half the worst case time.
Quicksort also does swaps, but nonadjacent ones.

Recall method:

Array $A[1..n]$

2. “Partition” ($O(n)$ compares/swaps) so that:

 $$\{A[1], \ldots, A[i-1]\} < \{A[i] == pivot\} < \{A[i+1], \ldots, A[n]\}$$

3. recursively sort $\{A[1], \ldots, A[i-1]\} \& \{A[i+1], \ldots, A[n]\}$
Worst case: already sorted (among others) –

\[T(n) = n + T(n-1) \Rightarrow \]

\[= n + (n-1) + (n-2) + \ldots + 1 = \frac{n(n+1)}{2} \]

Best case: pivot is always median

\[T(n) = 2 \cdot T(n/2) + n \]

\[\Rightarrow \sim n \log_2 n \]

Average case: ?

Below. Will turn out to be \sim 40\% slower than best

Why?

Random pivots are “near the middle on average”
average-case analysis

Assume input is a random permutation of 1, ..., n, i.e., that all n! permutations are equally likely

Then 1st pivot A[1] is uniformly random in 1, ..., n

Important subtlety:

- pivots at all recursive levels will be random, too, (unless you do something funky in the partition phase)
Let C_N be the average number of comparisons made by quicksort when called on an array of size N. Then:

$$C_0 = C_1 = 0 \text{ (a list of length } \leq 1 \text{ is already sorted)}$$

In the general case, there are $N-1$ comparisons: the pivot vs every other element (a detail: plus 2 more for handling the “pointers cross” test to end the loop). The pivot ends up in some position $1 \leq k \leq N$, leaving two subproblems of size $k-1$ and $N-k$. By Law of Total Expectation:

$$C_N = N + 1 + \frac{1}{N} \sum_{1 \leq k \leq N} (C_{k-1} + C_{N-k}) \text{ for } N \geq 2,$$

I/N because all values $1 \leq k \leq N$ for pivot are equally likely.

\[C_N = N + 1 + \frac{1}{N} \sum_{1 \leq k \leq N} (C_{k-1} + C_{N-k}) \quad \text{for } N \geq 2, \]

\[C_N = N + 1 + \frac{2}{N} \sum_{1 \leq k \leq N} C_{k-1}. \]

\[NC_N - (N - 1)C_{N-1} = N(N + 1) - (N - 1)N + 2C_{N-1}. \]

\[NC_N = (N + 1)C_{N-1} + 2N. \]
\[NC_N = (N + 1)C_{N-1} + 2N. \]

\[
\frac{C_N}{N + 1} = \frac{C_{N-1}}{N} + \frac{2}{N + 1}
\]

\[
= \frac{C_{N-2}}{N - 1} + \frac{2}{N} + \frac{2}{N + 1}
\]

\[
= \vdots
\]

\[
= \frac{C_2}{3} + \sum_{3 \leq k \leq N} \frac{2}{k + 1}.
\]

\[
\frac{C_N}{N + 1} \approx 2 \sum_{1 \leq k < N} \frac{1}{k} \approx 2 \int_1^N \frac{1}{x} \, dx = 2 \ln N,
\]

\[
2N \ln N \approx 1.39N \log N
\]
So, *average* run time, averaging over *randomly ordered inputs*, \(= \Theta(n \log n)\).

A worst case input is still worst case: \(n^2\) every time

(Is real data random?)

Is it possible to improve the worst case?
another idea: randomize the algorithm

Algorithm as before, except pivot is a *randomly selected* element of $A[1]...A[n]$ (at top level; $A[i]..A[j]$ for subproblem $i..j$)

Analysis is the same, but conclusion is different:

On *any* fixed input, average run time is $n \log n$, *averaged over repeated (random) runs of the algorithm*.

There are no longer any “bad inputs”, just “bad (random) choices.” Fortunately, such choices are improbable!