NP and Computational Intractability

P = NP?
Review

Basic reduction strategies.

- Simple equivalence: INDEPENDENT-SET \(\equiv_p\) VERTEX-COVER.
- Special case to general case: VERTEX-COVER \(\leq_p\) SET-COVER.
- Encoding with gadgets: 3-SAT \(\leq_p\) INDEPENDENT-SET.

Transitivity. If \(X \leq_p Y\) and \(Y \leq_p Z\), then \(X \leq_p Z\).

Pf idea. Compose the two algorithms.

Ex: 3-SAT \(\leq_p\) INDEPENDENT-SET \(\leq_p\) VERTEX-COVER \(\leq_p\) SET-COVER.
HAM-CYCLE: given an undirected graph $G = (V, E)$, does there exist a simple cycle Γ that contains every node in V.

NO: bipartite graph with odd number of nodes.
Directed Hamiltonian Cycle

DIR-HAM-CYCLE: given a **digraph** $G = (V, E)$, does there exist a simple directed cycle Γ that contains every node in V?

Claim. DIR-HAM-CYCLE \leq_P HAM-CYCLE.

Pf. Given a directed graph $G = (V, E)$, construct an undirected graph G' with $3n$ nodes.

![Diagram](image)
Directed Hamiltonian Cycle

Claim. G has a Hamiltonian cycle iff G' does.

Pf. \Rightarrow

- Suppose G has a directed Hamiltonian cycle Γ.
- Then G' has an undirected Hamiltonian cycle (same order).

Pf. \Leftarrow

- Suppose G' has an undirected Hamiltonian cycle Γ'.
- Γ' must visit nodes in G' using one of following two orders:
 - ..., B, G, R, B, G, R, B, G, R, B, ...
- Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or reverse of one. □
Claim. 3-SAT \leq_P DIR-HAM-CYCLE.

Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable.

Construction. First, create graph that has 2^n Hamiltonian cycles which correspond in a natural way to 2^n possible truth assignments.
3-SAT Reduces to Directed Hamiltonian Cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- Construct G to have 2^n Hamiltonian cycles.
- Intuition: traverse path i from left to right \iff set variable $x_i = 1$.

![Graph representation of the construction](image-url)
3-SAT Reduces to Directed Hamiltonian Cycle

Construction. Given 3-SAT instance \(\Phi \) with \(n \) variables \(x_i \) and \(k \) clauses.
- For each clause: add a node and 6 edges.

\[
C_1 = x_1 \lor \overline{x_2} \lor x_3 \\
C_2 = \overline{x_1} \lor x_2 \lor \overline{x_3}
\]
Polynomial-Time Reductions

INDEPENDENT SET

3-SAT reduces to INDEPENDENT SET

VERTEX COVER

SET COVER

packing and covering

DIR-HAM-CYCLE

HAM-CYCLE

sequencing

GRAPH 3-COLOR

PLANAR 3-COLOR

partitioning

SUBSET-SUM

SCHEDULING

numerical

Dick Karp (1972) 1985 Turing Award

constraint satisfaction

Dick Karp (1972) 1985 Turing Award

constraint satisfaction
Definition of NP
Decision Problems

Decision problem.

- X is a set of strings.
- Instance: string s.
- Algorithm A solves problem X: $A(s) = \text{yes}$ iff $s \in X$.

Polynomial time. Algorithm A runs in poly-time if for every string s, $A(s)$ terminates in at most $p(|s|)$ "steps", where $p(\cdot)$ is some polynomial.

$PRIMES$: $X = \{2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, \ldots\}$

Definition of P

P. Decision problems for which there is a poly-time algorithm.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
<th>Algorithm</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>MULTIPLE</td>
<td>Is x a multiple of y?</td>
<td>Grade school division</td>
<td>51, 17</td>
<td>51, 16</td>
</tr>
<tr>
<td>RELPRIME</td>
<td>Are x and y relatively prime?</td>
<td>Euclid (300 BCE)</td>
<td>34, 39</td>
<td>34, 51</td>
</tr>
<tr>
<td>PRIMES</td>
<td>Is x prime?</td>
<td>AKS (2002)</td>
<td>53</td>
<td>51</td>
</tr>
<tr>
<td>EDIT-DISTANCE</td>
<td>Is the edit distance between x and y less than 5?</td>
<td>Dynamic programming</td>
<td>neither, neither</td>
<td>acggggt, ttttta</td>
</tr>
<tr>
<td>LSOLVE</td>
<td>Is there a vector x that satisfies Ax = b?</td>
<td>Gauss-Edmonds elimination</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Certification algorithm intuition.

- Certifier views things from "managerial" viewpoint.
- Certifier doesn't determine whether $s \in X$ on its own; rather, it checks a proposed proof t that $s \in X$.

Def. Algorithm $C(s, t)$ is a certifier for problem X if for every string s,
$s \in X$ iff there exists a string t such that $C(s, t) = \text{yes}$.

"certificate" or "witness"

NP. Decision problems for which there exists a poly-time certifier.

\uparrow

$C(s, t)$ is a poly-time algorithm and $|t| \leq p(|s|)$ for some polynomial $p(\cdot)$.

Remark. NP stands for nondeterministic polynomial-time.
COMPOSITES. Given an integer s, is s composite?

Certificate. A nontrivial factor t of s. Note that such a certificate exists iff s is composite. Moreover |t| ≤ |s|.

Certifier.

```java
boolean C(s, t) {
    if (t ≤ 1 or t ≥ s)
        return false
    else if (s is a multiple of t)
        return true
    else
        return false
}
```

Instance. s = 437,669.

Certificate. t = 541 or 809. ← 437,669 = 541 × 809

Conclusion. COMPOSITES is in NP.
Certifiers and Certificates: 3-Satisfiability

SAT. Given a CNF formula Φ, is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause in Φ has at least one true literal.

Ex.

$$\left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(x_1 \lor x_2 \lor x_4 \right) \land \left(\overline{x_1} \lor \overline{x_3} \lor \overline{x_4} \right)$$

instance s

$x_1 = 1, \ x_2 = 1, \ x_3 = 0, \ x_4 = 1$

certificate t

Conclusion. SAT is in NP.
Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph $G = (V, E)$, does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

Conclusion. HAM-CYCLE is in NP.
P. Decision problems for which there is a poly-time algorithm.
EXP. Decision problems for which there is an exponential-time algorithm.
NP. Decision problems for which there is a poly-time certifier.

Claim. \(P \subseteq NP \).
Pf. Consider any problem \(X \) in \(P \).
 - By definition, there exists a poly-time algorithm \(A(s) \) that solves \(X \).
 - Certificate: \(t = \epsilon \), certifier \(C(s, t) = A(s) \).

Claim. \(NP \subseteq EXP \).
Pf. Consider any problem \(X \) in \(NP \).
 - By definition, there exists a poly-time certifier \(C(s, t) \) for \(X \).
 - To solve input \(s \), run \(C(s, t) \) on all strings \(t \) with \(|t| \leq p(|s|) \).
 - Return \(yes \), if \(C(s, t) \) returns \(yes \) for any of these.
The Main Question: P Versus NP

Does $P = \text{NP}$? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
- Is the decision problem as easy as the certification problem?
- Clay 1 million prize.

Consensus opinion on $P = \text{NP}$? Probably no.

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ...
If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, ...

If $P \neq \text{NP}$

would break RSA cryptography (and potentially collapse economy)
NP-Completeness
NP-Complete

NP-complete. A problem Y in NP with the property that for every problem X in NP, $X \leq_p Y$.

Theorem. Suppose Y is an NP-complete problem. Then Y is solvable in poly-time iff $P = NP$.

Pf. \iff If $P = NP$ then Y can be solved in poly-time since Y is in NP.

Pf. \Rightarrow Suppose Y can be solved in poly-time.

- Let X be any problem in NP. Since $X \leq_p Y$, we can solve X in poly-time. This implies $NP \subseteq P$.
- We already know $P \subseteq NP$. Thus $P = NP$. ▫

Fundamental question. Do there exist "natural" NP-complete problems?
Observation. All problems below are NP-complete and polynomial reduce to one another!