Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.
Interval Scheduling
Interval Scheduling

Interval scheduling.
- Job j starts at s_j and finishes at f_j.
- Two jobs compatible if they don’t overlap.
- Goal: find maximum subset of mutually compatible jobs.
Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

- What order?
- Does that give best answer?
- Why or why not?
- Does it help to be greedy about order?
Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

- [**Earliest start time**] Consider jobs in ascending order of start time s_j.

- [**Earliest finish time**] Consider jobs in ascending order of finish time f_j.

- [**Shortest interval**] Consider jobs in ascending order of interval length $f_j - s_j$.

- [**Fewest conflicts**] For each job, count the number of conflicting jobs c_j. Schedule in ascending order of conflicts c_j.
Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it’s compatible with the ones already taken.

Sort jobs by finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$.

```
A ← φ
for j = 1 to n {
    if (job j compatible with A)
        A ← A ∪ {j}
}
return A
```

Implementation. $O(n \log n)$.
- Remember job j^* that was added last to A.
- Job j is compatible with A if $s_j \geq f_{j^*}$.
Interval Scheduling

The diagram illustrates an interval scheduling problem with tasks represented by colored bars on a timeline.

- Task A spans from time 0 to 5.
- Task B starts at time 1 and ends at time 3.
- Task C starts at time 2 and ends at time 4.
- Task D spans from time 3 to 7.
- Task E starts at time 4 and ends at time 6.
- Task F starts at time 5 and ends at time 7.
- Task G starts at time 6 and ends at time 9.
- Task H spans from time 8 to 11.

The timeline is marked from time 0 to 11, with each hour representing a unit of time.
Interval Scheduling

![Interval Scheduling Diagram]

- A: Task A starts at time 0 and ends at time 5.
- B: Task B starts at time 1 and ends at time 3.
- C: Task C starts at time 2 and ends at time 4.
- D: Task D starts at time 4 and ends at time 8.
- E: Task E starts at time 5 and ends at time 6.
- F: Task F starts at time 6 and ends at time 7.
- G: Task G starts at time 7 and ends at time 10.
- H: Task H starts at time 9 and ends at time 11.

Time: 0 1 2 3 4 5 6 7 8 9 10 11
Interval Scheduling

Time

0 1 2 3 4 5 6 7 8 9 10 11

B C A E D F G H
Interval Scheduling
Interval Scheduling

The diagram illustrates an interval scheduling problem with the following tasks:

- Task A from time 0 to 6
- Task B from time 2 to 4
- Task C from time 1 to 4
- Task D from time 4 to 8
- Task E from time 5 to 7
- Task F from time 6 to 8
- Task G from time 8 to 10
- Task H from time 9 to 11
Interval Scheduling
Interval Scheduling
Theorem. Greedy algorithm is optimal.

Pf. ("greedy stays ahead")

Let i_1, i_2, \ldots, i_k be jobs picked by greedy, j_1, j_2, \ldots, j_m those in some optimal solution.

Show $f(i_r) \leq f(j_r)$ by induction on r.

- **Basis:** i_1 chosen to have min finish time, so $f(i_1) \leq f(j_1)$
- **Ind:** $f(i_r) \leq f(j_r) \leq s(j_{r+1})$, so j_{r+1} is among the candidates considered by greedy when it picked i_{r+1}, & it picks min finish, so $f(i_{r+1}) \leq f(j_{r+1})$

Similarly, $k \geq m$, else j_{k+1} is among (nonempty) set of candidates for i_{k+1}.
6.1 Weighted Interval Scheduling
Weighted interval scheduling problem.

- Job j starts at s_j, finishes at f_j, and has weight or value v_j.
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

```
<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Weighted Interval Scheduling
Recall. Greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.
Weighted Interval Scheduling

Notation. Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Def. \(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

Ex: \(p(8) = 5, p(7) = 3, p(2) = 0. \)

<table>
<thead>
<tr>
<th>j</th>
<th>p(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>
Dynamic Programming

One of the algorithmic sledgehammers

High level idea:

▪ Find a recurrence for the optimal solution in terms of optimal solutions to subproblems of the same type.

▪ Build up solutions to these subproblems in order of increasing size.
Dynamic Programming: Binary Choice

Notation. $OPT(j) = \text{value (weight) of optimal solution to the problem consisting of job requests 1, 2, ..., j.}$

- **Case 1:** OPT selects job j.
 - can't use incompatible jobs $\{ p(j) + 1, p(j) + 2, ..., j - 1 \}$
 - must include optimal solution to problem consisting of remaining compatible jobs $1, 2, ..., p(j)$

- **Case 2:** OPT does not select job j.
 - must include optimal solution to problem consisting of remaining compatible jobs $1, 2, ..., j-1$

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left\{ v_j + OPT(p(j)), \text{ OPT}(j - 1) \right\} & \text{otherwise}
\end{cases}
\]
Weighted Interval Scheduling: Brute Force

Leads to recursive algorithm.

Input: n, s₁,...,sₙ, f₁,...,fₙ, v₁,...,vₙ

Sort jobs by finish times so that f₁ ≤ f₂ ≤ ... ≤ fₙ.

Compute p(1), p(2), ..., p(n)

Compute-Opt(j) {
 if (j = 0)
 return 0
 else
 return max(vⱼ + Compute-Opt(p(j)), Compute-Opt(j-1))
}
Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \(\Rightarrow \) exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

\[
p(1) = 0, \ p(j) = j-2
\]
Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming: compute solutions in order of “smallest” to “largest”.

Input: \(n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n \)

Sort jobs by finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Compute \(p(1), p(2), \ldots, p(n) \)

Iterative-Compute-Opt {
 \(M[0] = 0 \)
 for \(j = 1 \) to \(n \)
 \(M[j] = \max(v_j + M[p(j)], M[j-1]) \)
}

Output \(M[n] \)

Claim: \(M[j] \) is value of optimal solution for jobs 1..\(j \)

Timing: Easy. Main loop is \(O(n) \); sorting is \(O(n \log n) \)
Weighted Interval Scheduling

Notation. Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Def. \(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

Ex: \(p(8) = 5, p(7) = 3, p(2) = 0 \).
Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming: compute solutions in order of “smallest” to “largest”.

Input: \(n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n \)

Sort jobs by finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Compute \(p(1), p(2), \ldots, p(n) \)

Iterative-Compute-Opt {
 \(M[0] = 0 \)
 for \(j = 1 \) to \(n \)
 \(M[j] = \max(v_j + M[p(j)], M[j-1]) \)
 }

Output \(M[n] \)

Claim: \(M[j] \) is value of optimal solution for jobs \(1..j \)

Timing: Easy. Main loop is \(O(n) \); sorting is \(O(n \log n) \)
Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
A. Do some post-processing – “traceback”

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
 if (j = 0)
 output nothing
 else if (v_j + M[p(j)] > M[j-1])
 print j
 Find-Solution(p(j))
 else
 Find-Solution(j-1)
}

- # of recursive calls ≤ n ⇒ O(n).
Algorithmic Paradigms

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Key properties needed for it to work:

- only polynomially many subproblems

- solution to original problem can be easily computed from solutions to subproblems.

- there is a natural ordering on subproblems from “smallest” to “largest” together with easy-to-compute recurrence that allows us to compute optimal solution to a subproblem in terms of optimal solutions to smaller subproblems.