
53

CSE 312
Autumn 2012

More on parameter estimation –  
Bias; and Confidence Intervals



Bias
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Likelihood Function
P( HHTHH | θ ): 

Probability of HHTHH, 
given P(H) = θ:

θ θ4(1-θ)
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(Also verify it’s max, not min, & not better on boundary)

Example 1
n coin flips, x1, x2, ..., xn;   n0 tails, n1 heads,  n0 + n1 = n;  

θ = probability of heads

 

Observed fraction of 
successes in sample is 
MLE of success 
probability in population

dL/dθ = 0

Rec
all



(un-) Bias
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A desirable property:  An estimator Y of a 
parameter θ is an unbiased estimator if 
       E[Y]  = θ
For coin ex. above, MLE is unbiased:
  Y = fraction of heads = (Σ1≤i≤nXi)/n, 
(Xi = indicator for heads in ith trial) so
  E[Y] = (Σ1≤i≤n E[Xi])/n = n θ/n = θ

by linearity of expectation



Are all unbiased estimators 
equally good?

No!  

E.g.,  “Ignore all but 1st flip; if it was H,  let 
Y’ = 1; else Y’ = 0”

Exercise: show this is unbiased

Exercise: if observed data has at least one H 
and at least one T, what is the likelihood of 
the data given the model with θ = Y’ ?
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Ex 3: xi � N(µ,⇥2), µ,⇥2 both unknown
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Sample mean is MLE of 
population mean, again

In general, a problem like this results in 2 equations in 2 unknowns.  
Easy in this case, since θ2 drops out of the ∂/∂θ1 = 0 equation

Likelihood 
surface

Rec
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Ex. 3, (cont.)

lnL(x1, x2, . . . , xn|�1, �2) =
⌅

1�i�n

�1
2

ln 2⇥�2 �
(xi � �1)2

2�2

⇥
⇥�2

lnL(x1, x2, . . . , xn|�1, �2) =
⌅

1�i�n

�1
2

2⇥

2⇥�2
+

(xi � �1)2

2�2
2

= 0

�̂2 =
�⇤

1�i�n(xi � �̂1)2
⇥

/n = s̄2

Sample variance is MLE of 
population variance

Rec
all



Bias? if Y = (Σ1≤i≤n Xi)/n  is the sample mean then
    E[Y] = (Σ1≤i≤n E[Xi])/n = n μ/n = μ
so the MLE is an unbiased estimator of population mean

Similarly, (Σ1≤i≤n (Xi-μ)2)/n is an unbiased estimator of σ2.

Unfortunately, if μ is unknown, estimated from the same data, as 
above,                                 is a consistent, but biased estimate 
of population variance.  (An example of overfitting.)   Unbiased 
estimate (B&T p467):

One Moral: MLE is a great idea, but not a magic bullet
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Ex. 3, (cont.)

Roughly, 
limn→∞ = 
correct



Biased?  Yes.  Why?  As an extreme, think about n = 1.  
Then θ2 = 0; probably an underestimate!

Also, consider n = 2.  Then θ1 is exactly between the 
two sample points, the position that exactly minimizes 
the expression for θ2.   Any other choices for θ1, θ2 
make the likelihood of the observed data slightly lower.  
But it’s actually pretty unlikely that two sample points 
would be chosen exactly equidistant from, and on 
opposite sides of the mean, so the MLE θ2 
systematically underestimates θ2.

(But not by much, & bias shrinks with sample size.)

More on Bias of θ2 
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Confidence Intervals
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A Problem With Point Estimates

Think again about estimating the mean of a normal 
distribution.  

Sample X1, X2, …, Xn

We showed sample mean Yn = (Σ1≤i≤n Xi)/n is an 
unbiased (and consistent) estimator of the population 
mean.  But with probability 1, it’s wrong!

Can we say anything about how wrong?

E.g., could I find a value Δ s.t. I’m 95% confident that 
the true mean is within ±Δ of my estimate?
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Yn = (Σ1≤i≤n Xi)/n  is a random variable

It has a mean and a variance

Assuming Xi’s are i.i.d. normal, mean = μ, variance = σ2, 

   Var(Yn) =  Var((Σ1≤i≤n Xi)/n) = (1/n2) Σ1≤i≤n Var(Xi)
              = (1/n2)(n σ2) = σ2/n

So, Pr((√n)|Yn-μ|/σ < z) = 2(1- Φ(z)) , (z >0)

E.g., Pr((√n)|Yn-μ|/σ < 1.96) ≈ 95%

I.e., true μ within ±1.96σ/√n of estimate ~ 95% of time
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