CSE 312 Autumn 2012

More on parameter estimation – Bias; and Confidence Intervals

Bias

Example I

n coin flips, x_1 , x_2 , ..., x_n ; n_0 tails, n_1 heads, $n_0 + n_1 = n$; θ = probability of heads 0.0020.0015 0.001 $L(x_1, x_2, \dots, x_n \mid \theta) = (1 - \theta)^{n_0} \theta^{n_1}$ 0.0005 $\log L(x_1, x_2, \dots, x_n \mid \theta) = n_0 \log(1 - \theta) + n_1 \log \theta$ $\frac{\partial}{\partial \theta} \log L(x_1, x_2, \dots, x_n \mid \theta) = \frac{-n_0}{1-\theta} + \frac{n_1}{\theta}$ Observed fraction of Setting to zero and solving: successes in sample is MLE of success $\underline{n_1}$ probability in population

(Also verify it's max, not min, & not better on boundary)

(un-) Bias

A desirable property: An estimator Y of a parameter θ is an *unbiased* estimator if $E[Y] = \theta$

For coin ex. above, MLE is unbiased: $Y = fraction of heads = (\Sigma_{1 \le i \le n} X_i)/n$,

 $(X_i = indicator for heads in ith trial) so$

$$E[Y] = (\Sigma_{1 \le i \le n} E[X_i])/n = n \theta/n = \theta$$

by linearity of expectation

Are all unbiased estimators equally good?

No!

E.g., "Ignore all but 1 st flip; if it was H, let Y' = I; else Y' = 0"

Exercise: show this is unbiased

Exercise: if observed data has at least one H and at least one T, what is the likelihood of the data given the model with $\theta = Y'$?

$$\ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} -\frac{1}{2} \ln 2\pi \theta_2 - \frac{(x_i - \theta_1)^2}{2\theta_2}$$
$$\frac{\partial}{\partial \theta_1} \ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} \frac{(x_i - \theta_1)}{\theta_2} = 0$$
$$\text{Likelihood}$$
$$\hat{\theta}_1 = \left(\sum_{1 \le i \le n} x_i\right) / n = \bar{x}$$

 θ_2

Sample mean is MLE of population mean, again

In general, a problem like this results in 2 equations in 2 unknowns. Easy in this case, since θ_2 drops out of the $\partial/\partial \theta_1 = 0$ equation 59

Ex. 3, (cont.)

Recall

$$\ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} -\frac{1}{2} \ln 2\pi \theta_2 - \frac{(x_i - \theta_1)^2}{2\theta_2}$$
$$\frac{\partial}{\partial \theta_2} \ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} -\frac{1}{2} \frac{2\pi}{2\pi \theta_2} + \frac{(x_i - \theta_1)^2}{2\theta_2^2} = 0$$
$$\hat{\theta}_2 = \left(\sum_{1 \le i \le n} (x_i - \hat{\theta}_1)^2 \right) / n = \bar{s}^2$$

Sample variance is MLE of population variance

Bias? if $Y = (\sum_{1 \le i \le n} X_i)/n$ is the sample mean then $E[Y] = (\sum_{1 \le i \le n} E[X_i])/n = n \mu/n = \mu$ so the MLE is an *unbiased* estimator of population mean

Similarly, $(\Sigma_{1 \le i \le n} (X_i - \mu)^2)/n$ is an unbiased estimator of σ^2 .

Unfortunately, if μ is unknown, estimated from the same data, as above, $\hat{\theta}_2 = \sum_{1 \le i \le n} \frac{(x_i - \hat{\theta}_1)^2}{n}$ is a consistent, but biased estimate of population variance. (An example of overfitting.) Unbiased estimate (B&T p467): $\hat{\theta}' = \sum_{i \le n} \frac{(x_i - \hat{\theta}_1)^2}{n}$

$$\hat{\theta}_2' = \sum_{1 \le i \le n} \frac{(x_i - \theta_1)^2}{n - 1}$$

Roughly, $\lim_{n\to\infty} =$ correct

One Moral: MLE is a great idea, but not a magic bullet

More on Bias of $\hat{\theta}_2$

Biased? Yes. Why? As an extreme, think about n = 1. Then $\hat{\theta}_2 = 0$; probably an underestimate!

Also, consider n = 2. Then $\hat{\theta}_1$ is exactly between the two sample points, the position that exactly minimizes the expression for θ_2 . Any other choices for θ_1 , θ_2 make the likelihood of the observed data slightly *lower*. But it's actually pretty unlikely that two sample points would be chosen exactly equidistant from, and on opposite sides of the mean, so the MLE $\hat{\theta}_2$ systematically underestimates θ_2 .

(But not by much, & bias shrinks with sample size.)

Confidence Intervals

A Problem With Point Estimates

Think again about estimating the mean of a normal distribution.

Sample X_1, X_2, \ldots, X_n

We showed sample mean $Y_n = (\sum_{1 \le i \le n} X_i)/n$ is an unbiased (and consistent) estimator of the population mean. But with probability 1, it's wrong!

Can we say anything about *how* wrong?

E.g., could I find a value Δ s.t. I'm 95% confident that the true mean is within $\pm \Delta$ of my estimate?

 $Y_n = (\sum_{1 \le i \le n} X_i)/n$ is a random variable

It has a mean and a variance

Assuming X_i's are i.i.d. normal, mean = μ , variance = σ^2 ,

$$\begin{aligned} \operatorname{Var}(\mathbf{Y}_n) &= \operatorname{Var}((\Sigma_{1 \le i \le n} X_i)/n) = (1/n^2) \Sigma_{1 \le i \le n} \operatorname{Var}(X_i) \\ &= (1/n^2)(n \sigma^2) = \sigma^2/n \end{aligned}$$

So, $Pr((\sqrt{n})|Y_n-\mu|/\sigma < z) = 2(I - \Phi(z))$, (z > 0)

E.g., $Pr((\sqrt{n})|Y_n-\mu|/\sigma < 1.96) \approx 95\%$

I.e., true μ within ±1.96 σ/\sqrt{n} of estimate ~ 95% of time