CSE 312
 Autumn 2012

More on parameter estimation Bias; and Confidence Intervals

Bias

Likelihood Function

P(HHTHH| θ): Probability of HHTHH, given $\mathrm{P}(\mathrm{H})=\theta$:

θ	$\theta^{4}(\mathrm{I}-\theta)$
0.2	0.0013
0.5	0.0313
0.8	0.0819
0.95	0.0407

Example I

n coin flips, $x_{1}, x_{2}, \ldots, x_{n} ; n_{0}$ tails, n_{l} heads, $n_{0}+n_{I}=n$; $\theta=$ probability of heads

$$
\begin{aligned}
& L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=(1-\theta)^{n_{0}} \theta^{n_{1}} \\
& \log L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=n_{0} \log (1-\theta)+n_{1} \log \theta \\
& \frac{\partial}{\partial \theta} \log L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=\frac{-n_{0}}{1-\theta}+\frac{n_{1}}{\theta} \\
& \text { Setting to zero and solving: } \begin{array}{l}
\text { Observed fraction of } \\
\text { successes in sample is }
\end{array} \\
& \qquad \begin{array}{l}
\text { MLE of sucess } \\
\text { probability in population }
\end{array}
\end{aligned}
$$

(Also verify it's max, not min, \& not better on boundary)

(un-) Bias

A desirable property: An estimator Y of a parameter θ is an unbiased estimator if

$$
\mathrm{E}[\mathrm{Y}]=\theta
$$

For coin ex. above, MLE is unbiased:
$Y=$ fraction of heads $=\left(\sum_{1 \leq i \leq n} X_{i}\right) / n$,
($X_{i}=$ indicator for heads in $i^{\text {th }}$ trial) so

$$
E[Y]=\left(\Sigma_{1 \leq i \leq n} E\left[X_{i}\right]\right) / n=n \theta / n=\theta
$$

by linearity of expectation

Are all unbiased estimators equally good?

No!
E.g., "Ignore all but Ist flip; if it was H, let $Y^{\prime}=1$; else $Y^{\prime}=0 "$

Exercise: show this is unbiased
Exercise: if observed data has at least one H and at least one T, what is the likelihood of the data given the model with $\theta=Y^{\prime}$?

$x_{i} \sim N\left(\mu, \sigma^{2}\right), \mu, \sigma^{2}$ both unknown

$$
\begin{aligned}
& \ln L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right)=\sum_{1 \leq i \leq n}-\frac{1}{2} \ln 2 \pi \theta_{2}-\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}} \\
& \frac{\partial}{\partial \theta_{1}} \ln L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right)=\sum_{1 \leq i \leq n} \frac{\left(x_{i}-\theta_{1}\right)}{\theta_{2}}=0 \\
& \text { Likelihood } \\
& \text { surface } \\
& \hat{\theta}_{1}=\left(\sum_{1 \leq i \leq n} x_{i}\right) / n=\bar{x}
\end{aligned}
$$

Sample mean is MLE of population mean, again

In general, a problem like this results in 2 equations in 2 unknowns. Easy in this case, since θ_{2} drops out of the $\partial / \partial \theta_{1}=0$ equation 59

Ex. 3, (cont.)

$$
\begin{aligned}
\ln L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right) & =\sum_{1 \leq i \leq n}-\frac{1}{2} \ln 2 \pi \theta_{2}-\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}} \\
\frac{\partial}{\partial \theta_{2}} \ln L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}\right) & =\sum_{1 \leq i \leq n}-\frac{1}{2} \frac{2 \pi}{2 \pi \theta_{2}}+\frac{\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}^{2}}=0 \\
\hat{\theta}_{2} & =\left(\sum_{1 \leq i \leq n}\left(x_{i}-\hat{\theta}_{1}\right)^{2}\right) / n=\bar{s}^{2}
\end{aligned}
$$

Sample variance is MLE of population variance

Ex. 3, (cont.)

Bias? if $Y=\left(\sum_{l \leq i \leq n} X_{i}\right) / n$ is the sample mean then

$$
E[Y]=\left(\sum_{l \leq i \leq n} E\left[X_{i}\right]\right) / n=n \mu / n=\mu
$$

so the MLE is an unbiased estimator of population mean
Similarly, $\left(\Sigma_{1 \leq i \leq n}\left(X_{i}-\mu\right)^{2}\right) / n$ is an unbiased estimator of σ^{2}.
Unfortunately, if μ is unknown, estimated from the same data, as above, $\hat{\theta}_{2}=\sum_{1 \leq i \leq n} \frac{\left(x_{i}-\hat{\theta}_{1}\right)^{2}}{n}$ is a consistent, but biased estimate of population variance. (An example of overfitting.) Unbiased estimate (B\&T p467):

$$
\hat{\theta}_{2}^{\prime}=\sum_{1 \leq i \leq n} \frac{\left(x_{i}-\hat{\theta}_{1}\right)^{2}}{n-1}
$$

Roughly,

One Moral: MLE is a great idea, but not a magic bullet

More on Bias of $\hat{\theta}_{2}$

Biased? Yes. Why? As an extreme, think about $\mathrm{n}=\mathrm{I}$. Then $\hat{\theta}_{2}=0$; probably an underestimate!
Also, consider $n=2$. Then $\hat{\theta}_{1}$ is exactly between the two sample points, the position that exactly minimizes the expression for θ_{2}. Any other choices for θ_{1}, θ_{2} make the likelihood of the observed data slightly lower. But it's actually pretty unlikely that two sample points would be chosen exactly equidistant from, and on opposite sides of the mean, so the MLE $\hat{\theta}_{2}$ systematically underestimates θ_{2}.
(But not by much, \& bias shrinks with sample size.)

Confidence Intervals

A Problem With Point Estimates

Think again about estimating the mean of a normal distribution.

Sample $X_{1}, X_{2}, \ldots, X_{n}$
We showed sample mean $Y_{n}=\left(\sum_{1 \leq i \leq n} X_{i}\right) / n$ is an unbiased (and consistent) estimator of the population mean. But with probability I, it's wrong!

Can we say anything about how wrong?
E.g., could I find a value Δ s.t. I'm 95% confident that the true mean is within $\pm \Delta$ of my estimate?
$Y_{n}=\left(\sum_{1 \leq i \leq n} X_{i}\right) / n$ is a random variable
It has a mean and a variance
Assuming X_{i} 's are i.i.d. normal, mean $=\mu$, variance $=\sigma^{2}$,

$$
\begin{aligned}
\operatorname{Var}\left(Y_{n}\right) & =\operatorname{Var}\left(\left(\sum_{1 \leq i \leq n} X_{i}\right) / n\right)=\left(1 / n^{2}\right) \sum_{1 \leq i \leq n} \operatorname{Var}\left(X_{i}\right) \\
& =\left(1 / n^{2}\right)\left(n \sigma^{2}\right)=\sigma^{2} / n
\end{aligned}
$$

So, $\operatorname{Pr}\left((\sqrt{ } n)\left|Y_{n}-\mu\right| / \sigma<z\right)=2(1-\Phi(z)),(z>0)$
E.g., $\operatorname{Pr}\left((\sqrt{ } n)\left|Y_{n}-\mu\right| / \sigma<1.96\right) \approx 95 \%$
I.e., true μ within $\pm 1.96 \sigma / \sqrt{ } \mathrm{n}$ of estimate $\sim 95 \%$ of time

