8. Average-Case Analysis of Algorithms
 + Randomized Algorithms
for i = 2 ... n-1 {
 T = A[i]
 j = i-1
 while j >= 0 && T < A[j] {
 A[j] = T
 j = j-1
 }
 A[j+1] = T
}
Run Time

Worst Case: $O(n^2)$

($\sim n^2$ swaps; \#compares = \#swaps + n - 1)

“Average Case”

? What’s an “average” input?

One idea (and about the only one that is analytically tractable): assume all $n!$ permutations of input are equally likely.
A permutation $\pi = (\pi_1, \pi_2, ..., \pi_n)$ of 1, ..., n is simply a list of the numbers between 1 and n, in some order.

(i,j) is an inversion in π if $i < j$ but $\pi_i > \pi_j$

E.g.,

$$\pi = (3, 5, 1, 4, 2)$$

has six inversions: (1,3), (1,5), (2,3), (2,4), (2,5), and (4,5)

Min possible: 0:
$$\pi = (1, 2, 3, 4, 5)$$

Max possible: n choose 2:
$$\pi = (5, 4, 3, 2, 1)$$

Obviously, the goal of sorting is to remove inversions
inversions & insertion sort

Swapping an adjacent pair of positions that are out-of-order decreases the number of inversions by exactly 1. So..., number of swaps performed by insertion sort is exactly the number of inversions present in the input.

Counting them:

a. worst case: n choose 2

b. average case:

$$I_{i,j} = \begin{cases}
1 & \text{if } (i, j) \text{ is an inversion} \\
0 & \text{if not}
\end{cases}$$

$$I = \sum_{i<j} I_{i,j}$$

$$E[I] = E \left[\sum_{i<j} I_{i,j} \right] = \sum_{i<j} E \left[I_{i,j} \right]$$
There is a 1-1 correspondence between permutations having inversion \((i,j)\) versus not:

\[
\pi = (\ldots \ a \ \ldots \ b \ \ldots) \\
\pi' = (\ldots \ b \ \ldots \ a \ \ldots)
\]

\[
E[I_{i,j}] = P(I_{i,j} = 1) = 1/2
\]

\[
E[I] = \sum_{i<j} E[I_{i,j}] = \sum_{i<j} \frac{1}{2} = \binom{n}{2} \cdot \frac{1}{2}
\]

Thus, the expected number of swaps in insertion sort is \(\binom{n}{2}/2\) versus \(\binom{n}{2}\) in worst-case. I.e.,

The average run time of insertion sort (assuming random input) is about half the worst case time.
average-case analysis of quicksort

Quicksort also does swaps, but nonadjacent ones.

Recall method:

Array A[1..n]

2. “Partition” (O(n) compares/swaps) so that:

{A[1], ..., A[i-1]} < {A[i] == pivot} < {A[i+1], ..., A[n]}

3. recursively sort {A[1], ..., A[i-1]} & {A[i+1], ..., A[n]}
quicksort run-time

Worst case: already sorted (among others) –

\[T(n) = n + T(n-1) \Rightarrow \]

\[= n + (n-1) + (n-2) + \ldots + 1 = \frac{n(n+1)}{2} \]

Best case: pivot is always median \(\Rightarrow \sim n \log_2 n \)

Average case: ?

Below. Will turn out to be \(\sim 40\% \) slower than best

Why?

Random pivots are “near the middle on average”
average-case analysis

Assume input is a random permutation of 1, ..., n, i.e.,
that all n! permutations are equally likely

Then 1st pivot A[1] is uniformly random in 1, ..., n

Important subtlety:
	pivots at all recursive levels will be random, too,
(unless you do something funky in the partition phase)
Let C_N be the average number of comparisons made by quicksort when called on an array of size N. Then:

$$C_0 = C_1 = 0 \quad \text{(a list of length } \leq 1 \text{ is already sorted)}$$

In the general case, there are $N-1$ comparisons: the pivot vs every other element (a detail: plus 2 more for handling the “pointers cross” test to end the loop). The pivot ends up in some position $1 \leq k \leq N$, leaving two subproblems of size $k-1$ and $N-k$.

$$C_N = N + 1 + \frac{1}{N} \sum_{1 \leq k \leq N} (C_{k-1} + C_{N-k}) \quad \text{for } N \geq 2,$$

I/N because all values $1 \leq k \leq N$ for pivot are equally likely.

\[C_N = N + 1 + \frac{1}{N} \sum_{1 \leq k \leq N} (C_{k-1} + C_{N-k}) \quad \text{for } N \geq 2, \]

\[C_N = N + 1 + \frac{2}{N} \sum_{1 \leq k \leq N} C_{k-1}. \]

\[NC_N - (N - 1)C_{N-1} = N(N + 1) - (N - 1)N + 2C_{N-1}. \]

\[NC_N = (N + 1)C_{N-1} + 2N. \]
\[NC_N = (N + 1)C_{N-1} + 2N. \]

\[
\frac{C_N}{N + 1} = \frac{C_{N-1}}{N} + \frac{2}{N + 1} = \frac{C_{N-2}}{N - 1} + \frac{2}{N} + \frac{2}{N + 1} = \ldots
\]

\[= \frac{C_2}{3} + \sum_{3 \leq k \leq N} \frac{2}{k + 1}. \]

\[
\frac{C_N}{N + 1} \approx 2 \sum_{1 \leq k < N} \frac{1}{k} \approx 2 \int_1^N \frac{1}{x} dx = 2 \ln N,
\]

\[2N \ln N \approx 1.39N \lg N \]
So, *average* run time, averaging over *randomly ordered inputs*, $= \Theta(n \log n)$.

A worst case input is still worst case: n^2 every time

(Is real data random?)

Is it possible to improve the worst case?
another idea: randomize the algorithm

Algorithm as before, except pivot is a randomly selected element of A[1]...A[n] (at top level; A[i]..A[j] for subproblem i..j)

Analysis is the same, but conclusion is different:

 On any fixed input, average run time is n log n, averaged over repeated (random) runs of the algorithm.

There are no longer any “bad inputs”, just “bad (random) choices.” Fortunately, such choices are improbable!
Average Case Analysis (of a deterministic alg):

1. for algorithm A, choose a sample space \(S \) and probability distribution \(P \) from which inputs are drawn
2. for \(x \in S \), let \(T(x) \) be the time taken by A on input \(x \)
3. calculate, as a function of the “size,” \(n \), of inputs,
 \[
 \sum_{x \in S} T(x) \cdot P(x)
 \]
 which is the expected or average run time of A

For sorting, distrib is usually “all \(n! \) permutations equiprobable”

Insertion sort: \(E[\text{time}] \propto E[\text{inversions}] = \binom{n}{2}/2 = \Theta(n^2) \), about half the worst case

Quicksort: \(E[\text{time}] = \Theta(n \log n) \) vs \(\Theta(n^2) \) in worst case;
fun with recurrences, sums & integrals
Randomized Algorithms (with non-random input):

1. For a randomized algorithm A, input x is fixed, just as usual, from some space I of possible inputs, but the algorithm may draw (and use) random samples $y = (y_1, y_2, ...)$ from a given sample space S and probability distribution P.

2. For any $x \in I$ and any $y \in S$, let $T(x,y)$ be the time taken by A on input x when y is sampled from S.

3. Calculate, as a function of the “size,” n, of inputs, $\max_{x \in I} \sum_{y \in S} T(x,y) \cdot P(y)$, which is the expected or average run time of A on a worst-case input.

Randomized Quicksort: choosing pivots at random, $E[\text{time}] = \Theta(n \log n)$ for any input. (For every input, there are some rare random choice sequences causing n^2 time.)
Worst-case analysis is much more common than average-case analysis because:

- it’s often easier
to get meaningful average case results, a reasonable probability model for “typical inputs” is critical, but may be unavailable, or difficult to analyze

- as with insertion sort, the results are often similar

But in some important examples, such as quicksort, average-case is sharply better

Randomized algorithms are very important in many areas; sometimes easier to argue that bad stuff is rare than to deterministically circumvent it. (Fascinating open problem: is this intrinsic?)