Sum of Independent Binomial RVs

- Let X and Y be independent random variables
= X~ Bin(ny, p) and Y ~ Bin(n,, p)
= X+Y ~Bin(n, +n,, p)
- Intuition:
= X has n, trials and Y has n, trials
o Each trial has same “success” probability p
= Define Z to be n; + n,trials, each with success prob. p
= Z~Bin(n, +ny p),andalso Z=X+Y
+ More generally: X; ~ Bin(n;, p) for L<i<N
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Sum of Independent Poisson RVs

- Let X and Y be independent random variables
= X~ Poi(%,) and Y ~ Poi(},)
= X+Y ~Poi(x, +2,)
+ Proof: (ust for reference)
= Rewrite (X+Y=n)as(X=k,Y=n-k)where0<k<n
P(X +Y :n):ZP(X =k,Y :n—k):ZP(x =k)P(Y =n—k)
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= Noting Binomial coefficient: (4+4,)"= ikl A%
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. P(X+Y =n)= (h+4) s0,X +Y =n-~Poi(x, +1,)

Dance, Dance, Convolution

- Let X and Y be independent random variables
= Cumulative Distribution Function (CDF) of X +Y:
Fyy(@=P(X+Y <a) . ey

[[ et (axdy= [ [f,(x)dxf,(y)dy

x+y<a y=—00 X=—00

[F@-y f,(y)dy
Y=o
= Fy,yis called convolution of Fy and Fy

= Probability Density Function (PDF) of X + Y, analogous:

fn@= [f@=y)f(y)dy
y=—®

= In discrete case, replace J' withY , and f(y) with p(y)
Y= y

Sum of Independent Uniform RVs

Let X and Y be independent random variables
= X~Uni(0,1) and Y ~Uni(0,1) > fla)=1for0<a<1l
= Whatis PDF of X +Y?
fr (@)= ff @-y) f,(y)dy= jf (a-y)dy
. When0<a<1and0<y<a O<a -~y <1->fya-y) =
frn(@= fdy=a

y=0

= Whenl<a<2anda-1<y<1,0<ay<l->fi(a-y)=1
fuv@= [dy=2-a  Fxw(@

yoa
0<a<i !

a
= Combining: fxy(@)=4i2-a 1l<a<2
0 otherwise 1 2

Sum of Independent Normal RVs

- Let X and Y be independent random variables
* X~N(ny, 69 and Y ~ N(,, 6,%)
= X+Y =Ny, + 62+ 0,9

- Generally, have n independent random variables
Xi~N(u, 02) for i=1,2,...,n

Virus Infections

- Say your RCC checks dorm machines for viruses
= 50 Macs, each independently infected with p = 0.1
= 100 PCs, each independently infected with p = 0.4
= A=#infected Macs A ~Bin(50, 0.1) ~ X~ N(5, 4.5)
« B=#infected PCs B~ Bin(100, 0.4) ~ Y ~ N(40, 24)
= Whatis P(2 40 machine infected)?
= P(A+B240)~P(X+Y 239.5)
« X+Y=W-~N(5+40 =45, 4.5 + 24 = 28.5)

W—-45 395-45
P(W >39.5)=P| >2I97 )1 9(1.03) ~0.8485
w ) (\/28.5 V285 ] (1.03)

Be glad it's not swine flu!



http://web.archive.org/web/20060622185149/http://www.mcdonnell-intl.com/animal care division.htm

Discrete Conditional Distributions

- Recall that for events E and F:

Operating System Loyalty

- Consider person buying 2 computers (over time)

P(E|F)= P(EF) \where P(F)>0 « X = 1st computer bought is a PC (1 if it is, 0 if it is not)
P(F) « Y = 2nd computer bought is a PC (1 if it is, 0 if it is not)
- Now, have X and Y as discrete random variables = Joint probability mass function (PMF):
« Conditional PMF of X given Y (where py(y) > 0): + Whatis P(Y =0| X =0)? X| o 1 |
P(X=xY=y) _Pxy(x¥) P00 _02_2 X -
Py (X Y) =P(X =Xx|Y =y) = =X P(Y =0| X =0) = 2% _%2_2
XY P(Y =y) py (¥) . px_(o) 8_3 73 0 02 03| 05
= Conditional CDF of X given Y (where py(y) > 0): * Whatis P(Y = 1| X = 0)? 1 01 04 | 05
P(X <aY =) P(Y —1|x —0)- Pxx(®D_01_1
Fov(@ly)=P(X <alY =y) _rFx=ary=y) px(©0) 03 3 Py(X) | 03 07 | 1.0
D e Py (6, Y) Per=) » WhatisP(X=0]Y =1)?
XY ’
—Lxsa TR 777 Py (X1Y) _ _ :px.v(oxl):gzl
Py (¥) ; X PX=0IV=D="""0 ~05 s
And It Applies to Books Too... Web Server Requests Redux
: - Requests received at web server in a day
= X = #requests from humans/day X ~ Poi(A,)
= Y = # requests from bots/day Y ~ Poi(%,)
= XandY are independent > X+ Y ~Poi(A, + 1)
= WhatisP(X=k|X+Y =n)?
P(X =K|X +Y =n)= P(X =k,Y =n—k) _ P(X =K)P(Y =n—k)
P(X +Y =n) P(X +Y =n)
_eta et n! nt A
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Continuous Conditional Distributions

. Let X and Y be continuous random variables
= Conditional PDF of X given'Y (where f(y) > 0):

f )
fxw (X1Y) = va ((>;)Y)
f ,y)dxd
fx\v(x|y)d>(:4x'yf(x(;,))d; 4

_P(x<X<x+dx,y<Y <y+dy)
- P(y<Y <y-+dy) B
= Conditional CDF of X given Y (where f,(y) > 0):
Far (@1y) =P(X <alY =y) = [ f,, (x| y) dx
= Note: Even though P(Y = a) =0, can cg?dition onY=a
o Really considering: P(a—5<Y <a+%)= J-fv(y)dy:e:f(a)

azl2

P(x< X <x+dx|y<Y <y+dy)

Let’s Do an Example

- XandY are continuous RVs with PDF:
f(x,y) = %X(Z—x—y) where 0<x,y <1
' 0 otherwise
= Compute conditional density: fxy (x|y)
fx\v xly)= fx‘v (x,y) = fry (X y)
[ () dx
[

fr (y)

L Bx@-x-y)  x@-x-y) _ x2-x-y)
1 1 - N
!%X(Z—x—y)dx !X(Z*X*Y)dx [XZ*X?:*%Y]U

_X(@2-x-y) 6x(2-x-y)
I




Independence and Conditioning

- If X and Y are independent discrete RVs:
P(X=xY=y) _P(X=x)P=y)_

P(X =x|Y =y) = =P(X =
(x =xly =y =22 o X =%
By (x| ) = 2 O _ P OIBY) _

Y P

- Analogously, for independent continuous RVs:

_f ) 0060 _
fa (K1) = 2 = 2 = 100

Conditional Independence Revisited

- ndiscrete random variables X;, X,, ..., X, are
called conditionally independent given Y if:

- Note: can turn products into sums using logs:
Inll[P(XI =x|Y= y):iln P(X;=x]Y=y)=K

TIP(X=x1Y =y)=e
i=1

Mixing Discrete and Continuous

- Let X be a continuous random variable
- Let N be a discrete random variable
= Conditional PDF of X given N:

Prix (%) i ()

fxw (Xln): . (N)

= Conditional PMF of N given X:

b (1) = IR (0)

Beta Random Variable

- Xis aBeta Random Variable: X ~ Beta(a, b)
= Probability Density Function (PDF):

T gex<l

1
f(x)= B(ah)
0 otherwise

1
where B(a,b) = j X (1-x)*dx
0

Beta 209

he) » Symmetric when a=b
« If X and N are independent, then: .« E[X]=—2 Var(X) :f‘ib
Fn (X1 = F, () Pax (1] %) = Py (N) a+h (a+b)(a+b+)
Flipping Coin With Unknown Probability Dude, Where’s My Beta?!

-+ Flip a coin (n + m) times, comes up with n heads
= We don’t know probability X that coin comes up heads
= All we know is that: X ~ Uni(0, 1)
= Whatis density of X given n heads in n + m flips?
= Let N = number of heads
= Given X =x, coin flips independent: N | X ~ Bin(n + m, x)

= Compute conditional density of X given N =n
n+m

l n m
. (Xln):P(N:n|X:x)fx(x):( n )X -
X P(N =n) P(N =n)

1
_L X"@-x)" where ¢ :Ix"(l— X)™dx
c 0

- Flip a coin (n + m) times, comes up with n heads
= Conditional density of X given N =n

1
Fun (X1 N) =%~x“(1—x)”‘ where ¢ =I><"(1—x)”‘dx
0

= Note: 0<x<1, so f,(x|n)=0 otherwise
= Recall Beta distribution:

_ 1 a1 y)b-
f(><):{B(""vb)X X gex<t

1
B(a,b) = [x**(1-x)""dx
0 otherwise 0

= Hey, that looks more familiar now...
= X|(N=n,n+mtrials) ~Beta(n + 1, m + 1)




Understanding Beta

X|(N=n, m+n trials) ~ Beta(n + 1, m + 1)

= X~ Uni(0, 1)
; . [ U B P
= Check this o_ut, poss. f(x)’a(a,b)x 1-x) ’B(a,b)x(l X)
° Beta(l, 1) =Uni(0,2) = ]1 1=1 where 0<x<1
» So, X ~ Beta(l, 1) fpldx

“Prior” distribution of X (before seeing any flips) is Beta
“Posterior” distribution of X (after seeing flips) is Beta
Beta is a conjugate distribution for Beta

= Prior and posterior parametric forms are the same!

= Beta is also conjugate for Bernoulli and Binomial

= Practically, conjugate means easy update:
o Add number of “heads” and “tails” seen to Beta parameters

Further Understanding Beta

- Can set X ~ Beta(a, b) as prior to reflect how

biased you think coin is apriori .

= This is a subjective probability!

= Then observe n + m trials,
where n of trials are heads

Update to get posterior probability

= X | (n heads in n + m trials) ~ Beta(a + n, b + m)

= Sometimes call a and b the “equivalent sample size”

= Prior probability for X based on seeing (a + b — 2)
“imaginary” trials, where (a — 1) of them were heads.

= Beta(1, 1) ~ Uni(0, 1) - we haven’t seen any
“imaginary trials”, so apriori know nothing about coin




