Whither the Binomial...

- Recall example of sending bit string over network

= n =4 bits sent over network where each bit had
independent probability of corruption p = 0.1

= X = number of bit corrupted. X ~ Bin(4, 0.1)
« In real networks, send large bit strings (length n ~ 10%)
+ Probability of bit corruption is very small p ~ 10°®
« X~ Bin(10% 10®) is unwieldy to compute
- Extreme n and p values arise in many cases
= # bit errors in file written to disk (# of typos in a book)
= # of elements in particular bucket of large hash table
= # of servers crashes in a day in giant data center
= # Facebook login requests that go to particular server

Binomial in the Limit

- Recall the Binomial distribution

. n! ; i
P(X =i)= f1-p)™
(X =1) i!(nii)!IO( p)
Let A = np (equivalently: p =A/n)
P(X i) - - (i)i(l_ij"’i _ n(n—l)..._(n-i+1)i‘(1—,1/n)f
il(n—i)!'\'n n n' it @-4/n)’
- Whennis large, p is small, and A is “moderate”:
MDD o aoamyret @-adn) 1
n

i o2 i
- Yielding: P(X:i)zl%e At

1

Poisson Random Variable

- Xis aPoisson Random Variable: X ~ Poi(})
» Xtakesonvalues O, 1, 2...
= and, for a given parameter A > 0,
= has distribution (PMF):
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Sending Data on Network Redux

- Recall example of sending bit string over network
= Send bit string of length n = 10*
= Probability of (independent) bit corruption p = 10
« X~ Poi(% = 10* * 10 = 0.01)
= What is probability that message arrives uncorrupted?
A 0.01)°
P(X =0)= e o= e’am% ~ 0.990049834
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- Using Y ~ Bin(10*, 10°%):
P(Y = 0) ~ 0.990049829

Caveat emptor: Binomial computed with built-in function in R software
package, so some approximation may have occurred. Approximation
are closer to you than they may appear in some software packages.

Simeon-Denis Poisson

- Simeon-Denis Poisson (1781-1840) was a prolific
French mathematician

- Published his first paper at 18, became professor
at 21, and published over 300 papers in his life
= He reportedly said “Life is good for only two things,
discovering mathematics and teaching mathematics.”

- Definitely did not look like Charlie Sheen

Poisson Random is Binomial in Limit

- Poisson approximates Binomial where n is large,
p is small, and A = np is “moderate”

Different interpretations of "moderate”
= n>20andp<0.05
= n>100and p<0.1

- Really, Poisson is Binomial as
n->oandp->0,wherenp=21
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Bin(10, 0.3), Bin(100, 0.03) vs. Poi(3)
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Tender (Central) Moments with Poisson

- Recall: Y ~ Bin(n, p)
« E[Y]=np
= Var(Y)=np(1-p)

« X~ Poi(A) whereA=np (n—>%andp > 0)
= EX]=np=2
= Var(X)=np(l-p)=A1-0)=1
= Yes, expectation and variance of Poisson are same
o Itbrings a tear to my eye...

= Recall: Var(X) = E[X?] — (E[X])?
= E[X?] = Var(X) + (E[X])?= A+ A2 =A(1 + 1)

It’s Really All About Raisin Cake

- Bake a cake using many raisins and lots of batter
- Cake is enormous (in fact, infinitely so...)
= Cut slices of “moderate” size (w.r.t. # raisins/slice)

= Probability p that a particular raisin is in a certain slice
is very small (p = 1/# cake slices)

- Let X = number of raisins in a certain cake slice

. X~ Poi(4), where 4 :w
# cake slices

CS = Baking Raisin Cake With Code

- Hash tables
= strings = raisins
= buckets = cake slices
- Server crashes in data center
= servers = raisins
= list of crashed machines = particular slice of cake
- Facebook login requests (i.e., web server requests)
= requests = raisins
= server receiving request = cake slice

Defective Chips

- Computer chips are produced
= p=0.1that a chip is defective
= Consider a sample of n = 10 chips
= Whatis P(sample contains < 1 defective chip)?

= Using Y ~ Bin(10, 0.1):

P(Y <1) = [lgj(o.l)" 1-0.2)"° + [lloj(o.l)1 (1-0.1)° ~0.7361

= Using X ~ Poi(A = (0.1)(10) = 1)

P(X <D —e'l setl _2et~0.7358
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Efficiently Computing Poisson

- Let X ~ Poi())
= Want to compute P(X = i) for multiple values of i
= E.g., Computing P(X sa):iP(x =i)
- lterative formulation: A
= Compute P(X =i+ 1) from P(X =)
P(X =i+l) e A" [i+])! 4
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Approximately Poisson Approximation

- Poisson can still provide good approximation
even when assumptions “mildly” violated

- “Poisson Paradigm”

- Can apply Poisson approximation when...
= “Successes” in trials are not entirely independent
o Example: # entries in each bucket in large hash table
= Probability of “Success” in each trial varies (slightly)
- Small relative change in a very small p

- Example: average # requests to web server/sec. may fluctuate
slightly due to load on network

Birthday Problem Redux

- Whatis the probability that of n people, none share
the same birthday (regardless of year)?

= n= [2) trials, one for each pair of people (x, y), X #y

= LetE,y = x and y have same birthday (trial success)
= P(Exy) =p=1/365 (note: all E, not independent)

« X ~ Poi(1) where A= ["ji _n(n-1)
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= Solve for smallest integer n, s.t.; e ""M/73° <05
In(e ""'7*%) < In(0.5) — n(n—1) = 730In(0.5) — n > 23
= Same as before!

Poisson Processes

- Consider “rare” events that occur over time
= Earthquakes, radioactive decay, hits to web server, etc.
= Have time interval for events (1 year, 1 sec, whatever...)
= Events arrive at rate: A events per interval of time

- Splittime interval into n = « sub-intervals
= Assume at most one event per sub-interval
= Event occurrences in sub-intervals are independent
= With many sub-intervals, probability of event occurring

in any given sub-interval is small

- N(t) = # events in original time interval ~ Poi(})

Web Server Load

- Consider requests to a web server in 1 second
= In past, server load averages 2 hits/second
= X = # hits server receives in a second
= Whatis P(X = 5)?
Model
= Assume server cannot acknowledge > 1 hit/msec.
= 1 sec =1000 msec. (= large n)
= P(hit server in 1 msec) = 2/1000 (= small p)
= X~Poi(A=2)
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P(X =5)=¢e2 % ~0.0361

Geometric Random Variable

- Xis Geometric Random Variable: X ~ Geo(p)
= Xis number of independent trials until first success
= pis probability of success on each trial
= Xtakes on values 1, 2, 3, ..., with probability:

P(X=n)=1-p)""p
« EX]=1/p Var(X) = (1 - p)/p?

- Examples:
= Flipping a fair (p = 0.5) coin until first “heads” appears.

= Urn with N black and M white balls. Draw balls (with
replacement, p = N/(N + M)) until draw first black ball.

= Generate bits with P(bit = 1) = p until first 1 generated

Negative Binomial Random Variable

- Xis Negative Binomial RV: X ~ NegBin(r, p)
= Xis number of independent trials until r successes
= pis probability of success on each trial
= Xtakesonvaluesr, r+1,r+2..., with probability:

P(X =n)= [: jjp'(l— p)"", wheren=r,r+1,...
= E[X]=r1lp Var(X) = r(1 - p)/p?

- Note: Geo(p) ~ NegBin(1, p)
- Examples:
= # of coin flips until r-th “heads” appears
= # of strings to hash into table until bucket 1 has r entries




Hypergeometric Random Variable

- Xis Hypergeometric RV: X ~ HypG(n, N, m)
= Urn with N balls: (N — m) black and m white.
= Draw n balls without replacement
= Xis number of white balls drawn
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= E[X]=n(m/N) Var(X) = nm(N —n)(N — m)/N3(N — 1)

= Letp=m/N (probability of drawing white on 1t draw)
+ Note: HypG(n, N, m) = Bin(n, m/N)

= Asn -> o and m/N remains constant

, wherei=01,..,n

Endangered Species

- Determine N = how many of some species remain
= Randomly tag m of species (e.g., with white paint)
= Allow animals to mix randomly (assuming no breeding)
= Later randomly observe another n of the species
= X = number of tagged animals in observed group of n
= X~ HypG(n, N, m)

- “Maximum Likelihood” estimate [TJ[N*{“J
= Set N to be value that maximizes: P(X :i)='[7

for the value i of X that you observed > N = mn/i
- Similar to assuming: i = E[X] = nm/N




