
1

Whither the Binomial…

• Recall example of sending bit string over network

 n = 4 bits sent over network where each bit had

independent probability of corruption p = 0.1

 X = number of bit corrupted. X ~ Bin(4, 0.1)

 In real networks, send large bit strings (length n  104)

 Probability of bit corruption is very small p  10-6

 X ~ Bin(104, 10-6) is unwieldy to compute

• Extreme n and p values arise in many cases

 # bit errors in file written to disk (# of typos in a book)

 # of elements in particular bucket of large hash table

 # of servers crashes in a day in giant data center

 # Facebook login requests that go to particular server

Binomial in the Limit

• Recall the Binomial distribution

• Let l = np (equivalently: p = l/n)

• When n is large, p is small, and l is “moderate”:

• Yielding:

ini pp
ini

n
iXP 


)1(

)!(!

!
)(

i

ni

i

ini

n

n

innnini

n
iXP

innn

)/1(

)/1(

!
1

)!(!

!
)(

)1)...(1(

l

llll





























ll  en n)/1(1
)1)...(1(




in

innn
1)/1( inl

l
l ll 



 e
i

e

i
iXP

ii

!1!
1)(

Poisson Random Variable

• X is a Poisson Random Variable: X ~ Poi(l)

 X takes on values 0, 1, 2…

 and, for a given parameter l > 0,

 has distribution (PMF):

• Note Taylor series:

• So:

!
)(

i
eiXP

ill







0

210

!
...

!2!1!0 i

i

i
e

lllll

1
!!

)(
000

 














 llll ll
ee

i
e

i
eiXP

i

i

i

i

i

Sending Data on Network Redux

• Recall example of sending bit string over network

 Send bit string of length n = 104

 Probability of (independent) bit corruption p = 10-6

 X ~ Poi(l = 104 * 10-6 = 0.01)

 What is probability that message arrives uncorrupted?

 Using Y ~ Bin(10
4
, 10-6):

990049834.0
!0

)01.0(

!
)0(

0
01.0   e

i
eXP

ill

990049829.0)0(YP

Caveat emptor: Binomial computed with built-in function in R software

package, so some approximation may have occurred. Approximation

are closer to you than they may appear in some software packages.

Simeon-Denis Poisson

• Simeon-Denis Poisson (1781-1840) was a prolific

French mathematician

• Published his first paper at 18, became professor

at 21, and published over 300 papers in his life

 He reportedly said “Life is good for only two things,

discovering mathematics and teaching mathematics.”

• Definitely did not look like Charlie Sheen

Poisson Random is Binomial in Limit

• Poisson approximates Binomial where n is large,

p is small, and l = np is “moderate”

• Different interpretations of "moderate"

 n > 20 and p < 0.05

 n > 100 and p < 0.1

• Really, Poisson is Binomial as

n  and p 0, where np = l

http://upload.wikimedia.org/wikipedia/commons/b/b7/Simeon_Poisson.jpg

2

Bin(10, 0.3), Bin(100, 0.03) vs. Poi(3)

P(X = k)

k

Tender (Central) Moments with Poisson

• Recall: Y ~ Bin(n, p)

 E[Y] = np

 Var(Y) = np(1 – p)

• X ~ Poi(l) where l = np (n   and p 0)

 E[X] = np = l

 Var(X) = np(1 – p) = l(1 – 0) = l

 Yes, expectation and variance of Poisson are same

o It brings a tear to my eye…

 Recall: Var(X) = E[X2] – (E[X])2

 E[X2] = Var(X) + (E[X])2 = l + l2 = l(1 + l)

It’s Really All About Raisin Cake

• Bake a cake using many raisins and lots of batter

• Cake is enormous (in fact, infinitely so…)

 Cut slices of “moderate” size (w.r.t. # raisins/slice)

 Probability p that a particular raisin is in a certain slice

is very small (p = 1/# cake slices)

• Let X = number of raisins in a certain cake slice

• X ~ Poi(l), where
slices cake #

raisins #
l

CS = Baking Raisin Cake With Code

• Hash tables

 strings = raisins

 buckets = cake slices

• Server crashes in data center

 servers = raisins

 list of crashed machines = particular slice of cake

• Facebook login requests (i.e., web server requests)

 requests = raisins

 server receiving request = cake slice

Defective Chips

• Computer chips are produced

 p = 0.1 that a chip is defective

 Consider a sample of n = 10 chips

 What is P(sample contains  1 defective chip)?

 Using Y ~ Bin(10, 0.1):

 Using X ~ Poi(l = (0.1)(10) = 1)

7358.02
!1

1

!0

1
)1(1

1
1

0
1   eeeXP

7361.0)1.01()1.0(
1

10
)1.01()1.0(

0

10
)1(91100 

















YP

Efficiently Computing Poisson

• Let X ~ Poi(l)

 Want to compute P(X = i) for multiple values of i

 E.g., Computing

• Iterative formulation:

 Compute P(X = i + 1) from P(X = i)

 Use recurrence relation:

1!/

)!1/(

)(

)1(1














iie

ie

iXP

iXP
i

i l

l

l
l

l

)(
1

)1(iXP
i

iXP 



l

ll l   eeXP
!0

)0(
0





a

i

iXPaXP
0

)()(

3

Approximately Poisson Approximation

• Poisson can still provide good approximation

even when assumptions “mildly” violated

• “Poisson Paradigm”

• Can apply Poisson approximation when...

 “Successes” in trials are not entirely independent

o Example: # entries in each bucket in large hash table

 Probability of “Success” in each trial varies (slightly)

o Small relative change in a very small p

o Example: average # requests to web server/sec. may fluctuate

slightly due to load on network

Birthday Problem Redux

• What is the probability that of n people, none share

the same birthday (regardless of year)?

 n = trials, one for each pair of people (x, y), x  y

 Let Ex,y = x and y have same birthday (trial success)

 P(Ex,y) = p = 1/365 (note: all Ex,y not independent)

 X ~ Poi(l) where

 Solve for smallest integer n, s.t.:

 Same as before!










2

n

730

)1(

365

1

2













nnn
l

730/)1(
0

730/)1(

!0

)730/)1((
)0( 


 nnnn e

nn
eXP

5.0730/)1( nne

23)5.0ln(730)1()5.0ln()ln(730/)1( nnne nn

Poisson Processes

• Consider “rare” events that occur over time

 Earthquakes, radioactive decay, hits to web server, etc.

 Have time interval for events (1 year, 1 sec, whatever...)

 Events arrive at rate: l events per interval of time

• Split time interval into n   sub-intervals

 Assume at most one event per sub-interval

 Event occurrences in sub-intervals are independent

 With many sub-intervals, probability of event occurring

in any given sub-interval is small

• N(t) = # events in original time interval ~ Poi(l)

Web Server Load

• Consider requests to a web server in 1 second

 In past, server load averages 2 hits/second

 X = # hits server receives in a second

 What is P(X = 5)?

• Model

 Assume server cannot acknowledge > 1 hit/msec.

 1 sec = 1000 msec. (= large n)

 P(hit server in 1 msec) = 2/1000 (= small p)

 X ~ Poi(l = 2)

0361.0
!5

2
)5(

5
2  eXP

Geometric Random Variable

• X is Geometric Random Variable: X ~ Geo(p)

 X is number of independent trials until first success

 p is probability of success on each trial

 X takes on values 1, 2, 3, …, with probability:

 E[X] = 1/p Var(X) = (1 – p)/p2

• Examples:

 Flipping a fair (p = 0.5) coin until first “heads” appears.

 Urn with N black and M white balls. Draw balls (with

replacement, p = N/(N + M)) until draw first black ball.

 Generate bits with P(bit = 1) = p until first 1 generated

ppnXP n 1)1()(

Negative Binomial Random Variable

• X is Negative Binomial RV: X ~ NegBin(r, p)

 X is number of independent trials until r successes

 p is probability of success on each trial

 X takes on values r, r + 1, r + 2…, with probability:

 E[X] = r/p Var(X) = r (1 – p)/p2

• Note: Geo(p) ~ NegBin(1, p)

• Examples:

 # of coin flips until r-th “heads” appears

 # of strings to hash into table until bucket 1 has r entries

,...1, where,)1(
1

1
)(












  rrnpp

r

n
nXP rnr

4

Hypergeometric Random Variable

• X is Hypergeometric RV: X ~ HypG(n, N, m)

 Urn with N balls: (N – m) black and m white.

 Draw n balls without replacement

 X is number of white balls drawn

 E[X] = n(m/N) Var(X) = nm(N – n)(N – m)/N2(N – 1)

 Let p = m/N (probability of drawing white on 1st draw)

• Note: HypG(n, N, m)  Bin(n, m/N)

 As n   and m/N remains constant

ni

n

N

in

mN

i

m

iXP ,...,1,0 where,)(

































Endangered Species

• Determine N = how many of some species remain

 Randomly tag m of species (e.g., with white paint)

 Allow animals to mix randomly (assuming no breeding)

 Later randomly observe another n of the species

 X = number of tagged animals in observed group of n

 X ~ HypG(n, N, m)

• “Maximum Likelihood” estimate

 Set N to be value that maximizes:

for the value i of X that you observed  = mn/i

• Similar to assuming: i = E[X] = nm/N

































n

N

in

mN

i

m

iXP)(

N̂

