Likelihood of Data

- Consider n I.1.D. random variables X,, X, ..., X,

= X; a sample from density function f(X; | 6)
o Note: now explicitly specify parameter 6 of distribution

= We want to determine how “likely” the observed data
(Xq, Xa, ..., Xp) IS based on density f(X; | 6)

= Define the Likelihood function, L(6):
LO) =TT (X190
i=1
o Thisis just a product since X; are I.1.D.

= Intuitively: what is probability of observed data using
density function f(X; | 6), for some choice of &

Maximum Likelihood Estimator

- The Maximum Likelihood Estimator (MLE) of 6,
is the value of @ that maximizes L(6)

= More formally: 6, =argmax L(6)
o

= More convenient to use log-likelihood function, LL(8):
LL(g)=logL(8) =log [ ] f (X, |€):ilog f(X;16)

i=1 =

= Note that log function is “monotone” for positive values
o Formally: x <y < log(x) < log(y) for all x, y > 0
= So, #that maximizes LL(6) also maximizes L(6)
o Formally: argmax LL(6) =argmax L(6)
o o

- Similarly, for any positive constant C (not dependenton 6):
argmax(c- LL(@)) = arg max LL(#) =arg max L(0)
g g g

Computing the MLE

- General approach for finding MLE of &

= Determine formula for LL(6)

oLL(O
- Differentiate LL(6) w.r.t. (each) @: %
= To maximize, set %ég):o

= Solve resulting (simultaneous) equation to get Gy, ¢

- Make sure that derived 9, .is actually a maximum (and not a
minimum or saddle point). E.g., check LL(Gy.e + &) < LL(Gye)

« This step often ignored in expository derivations
« So, we'll ignore it here too (and won’t require it in this class)
= For many standard distributions, someone has already
done this work for you. (Yay!)

Maximizing Likelihood with Bernoulli

Consider I.I1.D. random variables X;, X, ..., X,
= X; ~ Ber(p)
= Probability mass function, f(X; | p), can be written as:
f(X;|p)=p“@-p)™ where x,=0 or 1
- Likelihood: L(8) =] Tp" - p)**
i=1

= Log-likelihood:
LL(9) =Y log( p** (1~ p)*™) = X [X; (log p) + (L~ X;) log(1 - p)]
=Y(log p)+(n-Y)log(1-p) where Y=>" X,
= Differentiate w.r.t. p, and set to O:
alp _, 1
P p

-1 Y 1Q
=P +(-Y)——=0 = =T-23X
a ( )1_p pMLE n n‘71 i

Maximizing Likelihood with Poisson

- Consider I.1.D. random variables X;, X,, ..., X,
- X, ~ Poi(L)
A 9% et pXi

C PME: F(X 1) =22 Likelihood: L@&)=] ]
X! a X!

= Log-likelihood:
LL(®) =3 log( e
i=1 X!
=-na+log(2)Y> X; =D log(X,!)
i=1

i=1

)= [ Alog(e) + X, log( 2) —log( X,)]

= Differentiate w.r.t. &, and set to 0:

oLL(A) 13 13
:_n+7§ X. =0 = :75 X,
BV 2e e n&

Maximizing Likelihood with Normal

- Consider I.1.D. random variables X;, X,, ..., X,
= X ~N(u, 0?)
1 —(X;—p)? I(257%)

- PDF: f(X; |#152)=m9

= Log-likelihood:
LL(O) :ilog(%e*wf“m) =3 [ logv2ze) — (X, - ) 1(20%)]
= o =

= First, differentiate w.r.t. n, and set to O:
oLL(y,0%) & W1
TR 0N oX - ) (207 == > (X, — 1) =0
ou ;(./t)(o) Gz;(.u)
= Then, differentiate w.r.t. ¢, and set to 0:
2 n n
AHE) 322X, -7 H20%) =2+ 3 (X~ o) =0

oo = i-1
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Being Normal, Simultaneously
= Now have two equations, two unknowns:
13 n < 23
S X )= - X, — =
ng,( i—#)=0 o’+§( i—u) l(o*)=0
= First, solve for pyg:
1@ n 1o
72()(.*#):0 = ZX|:n# = yMLE:72X|
[e ) = ni=
= Then, solve for 6%, g:
DS K= (69 =0 = not =Y (X, —u)’
o I i1
ol =3 (X~ e’
ni=

= Note: py g Unbiased, but 62, ¢ biased (same as MOM)

Maximizing Likelihood with Uniform

- Consider I.I.D. random variables X;, X,, ..., X,
= X; ~ Uni(a, b) 1
-pDF:f(><.|a,b):{ﬁ a<x<b

0

otherwise

Y
= Likelihood: L(#) = [b*a} 8 <X X Xy <D
0 otherwise
Constrainta < Xy, X,, ..., X, < b makes differentiation tricky

o

- Intuition: want interval size (b — a) to be as small as possible to
maximize likelihood function for each data point

But need to make sure all observed data contained in interval
« If all observed data not in interval, then L(6) = 0

o

= Solution: ay g = MiN(Xy, ..., X,)  bye = Max(Xy, ..., Xp)

Understanding MLE with Uniform

- Consider I.I1.D. random variables X;, X,, ..., X,
« X; ~Uni(0, 1)
= Observe data:

- 0.15,0.20, 0.30, 0.40, 0.65, 0.70, 0.75
Likelihood: L(a,1) Likelihood: L(0, b)
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Once Again, Small Samples = Problems

- How do small samples effect MLE?
= In many cases, iy :%En: X; =sample mean
o Unbiased. Not too shabtl);...
= As seen with Normal, o :%i(x. ~He)’
- Biased. Underestimates for smeilzlin (e.g.,,0forn=1)
= As seen with Uniform, ay, ¢ 2a and by <b
- Biased. Problematic for small n (e.g.,a=bwhenn=1)
= Small sample phenomena intuitively make sense:

o Maximum likelihood = best explain data we've seen

- Does not attempt to generalize to unseen data

Properties of MLE

- Maximum Likelihood Estimators are generally:
Consistent: lim P(| é—9|< g)=1fore>0
n—ow

Potentially biased (though asymptotically less so)

Asymptotically optimal
- Has smallest variance of “good” estimators for large samples

Often used in practice where sample size is large
relative to parameter space
- But be careful, there are some very large parameter spaces
- Joint distributions of several variables can cause problems
+ Parameter space grows exponentially
« Parameter space for 10 dependent binary variables ~ 210

Maximizing Likelihood with Multinomial

- Consider I.I.D. random variables Y4, Y,, ..., Y,
+ Yy ~ Multinomial(py, p, ..., Pm), Where Y p, =1

i=1 m
X; = number of trials with outcome i where ZX, =n
i=1

Xm

1
PDF: f (Xyyees Xy | Puves Pr) = sy P2 P3P

Log-likelihood: LL(6) = log(n!) —ilog( X1 +i X; log( p,)

Account for constraint )_p, =1 when differentiating LL(6)

Use Lagrange multiplie/rg (drop non-p; terms):

AO)=3 X, lodp)+ A3 p,-D)

Rock on, dog!

Joseph-Louis Lagrange
(1736-1813)
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Home on Lagrange

- Want to maximize:
A0) =2 X;log(p,) + A p -1
i=1 i=1
= Differentiate w.r.t. each p;, in turn:
A@B) 1

—=X;—+4=0 = p,:_—xi
op; P A

« Solve for &, noting D"X, =n and > p, =1:
i=1 i=1
& & — X -n
R A 1=— A=—
;p, ; - - = n

. . I X,
= Substitute A into p;, yielding: p; :TI

= Intuitive result: probability p; = proportion of outcome i

When MLE’s Attack!

Consider 6-sided die
= X~ Multinomial(py, P2, P3, P4, Ps: Pe)
= Roll n =12 times
= Result: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes
= Consider MLE for p;:
o Py =3/12,p, = 2/12, py = 0/12, p, = 3/12, ps = 1/12, pg = 3/12
= Based on estimate, infer that you will never roll a three
= Do you really believe that?
o Frequentist: Need to roll more! Probability = frequency in limit
- Bayesian: Have prior beliefs of probability, even before any rolls!

Need a VVolunteer

So good to see
you again!

Two Envelopes

| have two envelopes, will allow you to have one
= One contains $X, the other contains $2X

= Select an envelope
o Openit!

= Now, would you like to switch for other envelope?
= To help you decide, compute E[$ in other envelope]
o LetY =$in envelope you selected
E[$in other envelope] :%-%+%-2Y :%Y
- Before opening envelope, think either equally good

= So, what happened by opening envelope?
o And does it really make sense to switch?




