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The Questions of Our Time

• Y is a non-negative continuous random variable

 Probability Density Function:  fY(y)

 Already knew that:

 But, did you know that:

?!?

 No, I didn’t think so...

 Analogously, in the discrete case, where X = 1, 2, …, n
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Life Gives You Lemmas, Make Lemma-nade!

• A lemma in the home or office is a good thing

• Proof:
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Discrete Joint Mass Functions

• For two discrete random variables X and Y, the            

Joint Probability Mass Function is:

• Marginal distributions:

• Example: X = value of die D1, Y = value of die D2
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• Consider households in Silicon Valley

 A household has C computers: C = X Macs + Y PCs

 Assume each computer equally likely to be Mac or PC

A Computer (or Three) in Every House
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Y
(y)

0 0.16 0.12 0.07 0.04 0.39

1 0.12 0.14 0.12 0 0.38

2 0.07 0.12 0 0 0.19

3 0.04 0 0 0 0.04

p
X
(x) 0.39 0.38 0.19 0.04 1.00

Marginal distributions

Continuous Joint Distribution Functions

• For two continuous random variables X and Y, the            

Joint Cumulative Probability Distribution is:

• Marginal distributions:

• Let’s look at one:
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Joint

• This is a joint

• A joint is not a mathematician

 It did not start doing mathematics at an early age

 It is not the reason we have “joint distributions”

 And, no, Charlie Sheen does not look like a joint

o But he does have them…

o He also has joint custody of his children with Denise Richards
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Computing Joint Probabilities

• Let FX,Y (x, y) be joint CDF for X and Y
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• Random variables X and Y, are Jointly 

Continuous if there exists PDF f
X,Y

(x, y) defined 

over – < x, y <  such that:

• Cumulative Density Function (CDF):

• Marginal density functions:

Jointly Continuous
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Imperfection on a Disk

• Disk surface is a circle of radius R

 A single point imperfection uniformly distributed on disk

 Distance to origin:                        ,
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Welcome Back the Multinomial!

• Multinomial distribution

 n independent trials of experiment performed

 Each trial results in one of m outcomes, with        

respective probabilities: p1, p2, …, pm where

 Xi = number of trials with outcome i

where                  and
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Hello Die Rolls, My Old Friend…

• 6-sided die is rolled 7 times

 Roll results: 1 one, 1 two, 0 three, 2 four, 0 five, 3 six

• This is generalization of Binomial distribution

 Binomial: each trial had 2 possible outcomes

 Multinomial: each trial has m possible outcomes
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Probabilistic Text Analysis

• Ignoring order of words, what is probability of any 

given word you write in English?

 P(word = “the”) > P(word = “transatlantic”)

 P(word = “Stanford”) > P(word = “Cal”)

 Probability of each word is just multinomial distribution

• What about probability of those same words in 

someone else’s writing?

 P(word = “probability” | writer = you) >

P(word = “probability” | writer = non-CS109 student)

 After estimating P(word | writer) from known writings, 

use Bayes Theorem to determine P(writer | word) for 

new writings!
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Old and New Analysis

• Authorship of “Federalist Papers”

 85 essays advocating ratification of 

US constitution

 Written under pseudonym “Publius”

o Really, Alexander Hamilton, James 

Madison and John Jay

 Who wrote which essays?

o Analyzed probability of words in each 

essay versus word distributions from 

known writings of three authors

• Filtering Spam

 P(word = “Viagra” | writer = you) 

<< P(word = “Viagra” | writer = spammer)


