Recall with probability p since requests independent:

Let $X = \#$ of events that occur: $X = \sum_{i=1}^{n} I_i$, $E[X] = \sum_{i=1}^{n} E[I_i] = \sum_{i=1}^{n} P(A_i)$

Now consider pair of events A_i, A_j occurring

- $I_i I_j = 1$ if both events A_i and A_j occur, 0 otherwise
- Number of pairs of events that occur is $X = \sum_{i \neq j} I_i I_j$

Let’s Try It with the Binomial

- $X \sim \text{Bin}(n, p)$ $E[X] = \sum_{i=1}^{n} P(A_i) = np$

- Each trial: $X_i \sim \text{Ber}(p)$ $E[X_i] = p$

- Let event $A_i = \text{trial i is success (i.e., } X_i = 1)$

 $E\left[\left(\frac{X}{2}\right)^2\right] = \sum_{i=1}^{n} E[X_i] \cdot \sum_{i=1}^{n} P(A_i, A_i) = \sum_{i=1}^{n} p^2 = \binom{n}{2} p^2$

 $E[X(X - 1)] = E[X^2] - E[X] = n(n-1) p^2$

 $\text{Var}(X) = E[X^2] - (E[X])^2 = (E[X^2]) - E[X] + (E[X])^2$

 $= n(n-1) p^2 + np - (np)^2 = n^2 p^2 - np^2 + np - n^2 p^2$

 $= np(1 - p)$

Computer Cluster Utilization (cont.)

- Computer cluster with N servers
 - Requests independently go to server i with probability p_i
 - Let event $A_i = \text{server i receives no requests}$
 - $X = \#$ of events A_1, A_2, \ldots, A_N that occur
 - $Y = \#$ servers that receive ≥ 1 request $\Rightarrow N - X$
 - $E[Y]$ after first n requests?
 - Since requests independent: $P(A_i) = (1 - p_i)^r$

 $E[X] = \sum_{i=1}^{n} P(A_i) = \sum_{i=1}^{n} (1 - p_i)^r$

 $E[Y] = N - E[X] = N - \sum_{i=1}^{n} (1 - p_i)^r$

 when $p_i = \frac{1}{N}$ for $1 \leq i \leq N$, $E[Y] = N - \sum_{i=1}^{n} (1 - \frac{1}{N})^r = N [1 - (1 - \frac{1}{N})^r]$

From Event Pairs to Variance

- Expected number of pairs of events:

 $E\left[\left(\frac{X}{2}\right)^2\right] = \frac{1}{2} E[X^2] - E[I_i] = \frac{1}{2} \sum_{i=1}^{n} P(A_i, A_i)$

 $E[X^2] = 2 \sum_{i=1}^{n} P(A_i, A_i) \Rightarrow E[X^2] = 2 \sum_{i=1}^{n} P(A_i, A_i) + E[X]$

- Recall: $\text{Var}(X) = E[X^2] - (E[X])^2$

 $\text{Var}(X) = 2 \sum_{i=1}^{n} P(A_i, A_i) + (E[X])^2 - (E[X])^2$

 $= 2 \sum_{i=1}^{n} P(A_i, A_i) + (E[X])^2$ - $\left(\sum_{i=1}^{n} P(A_i)\right)^2$

Computer Cluster = Coupon Collecting

- Computer cluster with N servers
 - Requests independently go to server i with probability p_i
 - Let event $A_i = \text{server i receives no requests}$
 - $X = \#$ of events A_1, A_2, \ldots, A_N that occur
 - $Y = \#$ servers that receive ≥ 1 request $\Rightarrow N - X$
 - This is really another "Coupon Collector" problem
 - Each server is a "coupon type"
 - Request to server = collecting a coupon of that type

- Hash table version
 - Each server is a bucket in table
 - Request to server = string gets hashed to that bucket
Product of Expectations

- Let X and Y are independent random variables, and g(*) and h(*) are real-valued functions
 \[E[g(X)]E[h(Y)] = E[g(X)h(Y)] \]

- Proof:
 \[E[g(X)h(Y)] = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} g(x)h(y)f_{X,Y}(x,y) \, dx \, dy \]
 \[= \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} g(x)f_X(x)h(y)f_Y(y) \, dx \, dy \]
 \[= \int_{y=-\infty}^{\infty} h(y)f_Y(y) \, dy \int_{x=-\infty}^{\infty} g(x)f_X(x) \, dx \]
 \[= E[g(X)]E[h(Y)] \]

The Dance of the Covariance

- Say X and Y are arbitrary random variables
- Covariance of X and Y:
 \[\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])] \]

- Equivalently:
 \[\text{Cov}(X, Y) = E[XY] - E[X]E[Y] \]

- X and Y independent, E[XY] = E[X]E[Y] → Cov(X, Y) = 0
- But Cov(X, Y) = 0 does not imply X and Y independent!

Another Example of Covariance

Consider the following data:

<table>
<thead>
<tr>
<th>Weight</th>
<th>Height</th>
<th>Weight * Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>57</td>
<td>3708</td>
</tr>
<tr>
<td>71</td>
<td>59</td>
<td>4189</td>
</tr>
<tr>
<td>53</td>
<td>49</td>
<td>2597</td>
</tr>
<tr>
<td>67</td>
<td>62</td>
<td>4154</td>
</tr>
<tr>
<td>55</td>
<td>51</td>
<td>2805</td>
</tr>
<tr>
<td>58</td>
<td>50</td>
<td>2900</td>
</tr>
<tr>
<td>77</td>
<td>55</td>
<td>4235</td>
</tr>
<tr>
<td>57</td>
<td>48</td>
<td>2736</td>
</tr>
<tr>
<td>56</td>
<td>42</td>
<td>2352</td>
</tr>
<tr>
<td>51</td>
<td>42</td>
<td>2142</td>
</tr>
<tr>
<td>61</td>
<td>61</td>
<td>3776</td>
</tr>
</tbody>
</table>

\[= 3355.83 - (62.75)(52.75) \]
\[= 45.77 \]

Properties of Covariance

- Say X and Y are arbitrary random variables
- Covariance of X and Y:
 \[\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])] \]

- Equivalently:
 \[\text{Cov}(X, Y) = E[XY] - E[X]E[Y] \]

- Covariance of sums of random variables
 \[\text{Cov}(\sum_{i=1}^{m} X_i, \sum_{j=1}^{n} Y_j) = \sum_{i=1}^{m} \sum_{j=1}^{n} \text{Cov}(X_i, Y_j) \]
Variance of Sum of Variables

- \[\text{Var} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} \text{Var} (X_i) + 2 \sum_{j=1}^{n} \sum_{i<j} \text{Cov} (X_i, X_j) \]

- **Proof:**
 \[\text{Var} \left(\sum_{i=1}^{n} X_i \right) = \text{Cov} \left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i \right) \]
 \[= \sum_{i=1}^{n} \sum_{j=1}^{n} \text{Cov} (X_i, X_j) \]
 \[= \sum_{i=1}^{n} \text{Var} (X_i) + \sum_{i<j} \sum_{j<i} \text{Cov} (X_i, X_j) \]
 \[\text{By symmetry:} \quad \text{Cov} (X_i, X_j) = \text{Cov} (X_j, X_i) \]
 \[= \sum_{i=1}^{n} \text{Var} (X_i) + 2 \sum_{j=1}^{n} \sum_{i<j} \text{Cov} (X_i, X_j) \]
 \[= \sum_{i=1}^{n} \text{Var} (X_i) + 2 \sum_{j=1}^{n-1} \sum_{i=j+1}^{n} \text{Cov} (X_i, X_j) \]
 \[\text{If all } X_i \text{ and } X_j \text{ independent } (i \neq j): \text{Var} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} \text{Var} (X_i) \]

- **Note:** \(\text{Cov} (X, X) = \text{Var} (X) \)

Holá Compadre: La Distribución Binomial

- Let \(Y \sim \text{Bin}(n, p) \)
 - \(n \) independent trials
 - Let \(X_i = 1 \) if \(i \)-th trial is “success”, 0 otherwise
 - \(X_i \sim \text{Ber}(p) \)
 - \(\text{E}[X] = p \)
 - \(\text{Var}(Y) = \text{Var}(X_1) + \text{Var}(X_2) + \ldots + \text{Var}(X_n) \)
 - \(\text{Var}(X) = \text{E}[X^2] - (\text{E}[X])^2 \) since \(X_i^2 = X_i \)
 - \(p - p^2 = p(1-p) \)
 - \(\text{Var}(Y) = n \text{Var}(X) = np(1-p) \)

Variance of Sample Mean

- Consider \(n \) i.i.d. random variables \(X_1, X_2, \ldots, X_n \)
 - \(X_i \) have distribution \(F \) with \(\text{E}[X_i] = \mu \) and \(\text{Var}(X_i) = \sigma^2 \)
 - We call sequence of \(X_i \) a **sample** from distribution \(F \)
 - Recall sample mean: \(\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} \) where \(\text{E} [\bar{X}] = \mu \)
 - What is \(\text{Var}(\bar{X}) \)?
 \[\text{Var}(\bar{X}) = \text{Var} \left(\frac{\sum_{i=1}^{n} X_i}{n} \right) = \frac{1}{n^2} \text{Var} \left(\sum_{i=1}^{n} X_i \right) \]
 \[= \frac{1}{n^2} \left(\frac{1}{n} \right)^2 \sum_{i=1}^{n} \text{Var} (X_i) \]
 \[= \frac{1}{n} \sigma^2 \]

Sample Variance

- Consider \(n \) i.i.d. random variables \(X_1, X_2, \ldots, X_n \)
 - \(X_i \) have distribution \(F \) with \(\text{E}[X_i] = \mu \) and \(\text{Var}(X_i) = \sigma^2 \)
 - We call sequence of \(X_i \) a **sample** from distribution \(F \)
 - Recall sample mean: \(\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} \) where \(\text{E} [\bar{X}] = \mu \)
 - Sample deviation: \(X_i - \bar{X} \), for \(i = 1, 2, \ldots, n \)
 - Sample variance: \(s^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1} \)
 - What is \(\text{E}[s^2] \)?
 - \(\text{E}[s^2] = \sigma^2 \)
 - We say \(s^2 \) is “unbiased estimate” of \(\sigma^2 \)

Proof that \(\text{E}[S^2] = \sigma^2 \) (just for reference)

\[\text{E}[S^2] = \text{E} \left[\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1} \right] = (n-1) \text{E}[S^2] = \text{E} \left[\sum_{i=1}^{n} (X_i - \bar{X})^2 \right] \]

\[(n-1) \text{E}[S^2] = \text{E} \left[\sum_{i=1}^{n} (X_i - \bar{X})^2 \right] = \text{E} \left[\sum_{i=1}^{n} (X_i - \mu)^2 + n(\bar{X} - \mu)^2 \right] \]

\[= \text{E} \left[\sum_{i=1}^{n} (X_i - \mu)^2 + \sum_{i=1}^{n} (\bar{X} - \mu)^2 + 2 \sum_{i=1}^{n} (X_i - \mu)(\bar{X} - \mu) \right] \]

\[= \text{E} \left[\sum_{i=1}^{n} (X_i - \mu)^2 + n(\bar{X} - \mu)^2 + 2(\bar{X} - \mu) \sum_{i=1}^{n} (X_i - \mu) \right] \]

\[= \text{E} \left[\sum_{i=1}^{n} (X_i - \mu)^2 + n(\bar{X} - \mu)^2 + 2(\bar{X} - \mu) n(\bar{X} - \mu) \right] \]

\[= n\sigma^2 + n \text{Var}(\bar{X}) = n\sigma^2 + n \frac{\sigma^2}{n} - n\sigma^2 + \sigma^2 = (n-1)\sigma^2 \]

\[\text{So,} \quad \text{E}[S^2] = \sigma^2 \]