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Balls, Urns, and the Supreme Court

• Supreme Court case: Berghuis v. Smith

If a group is underrepresented in a jury pool, how do you tell?

 Article by Erin Miller – Friday, January 22, 2010

 Thanks to Josh Falk for pointing out this article

Justice Breyer [Stanford Alum] opened the questioning by 

invoking the binomial theorem. He hypothesized a scenario 

involving “an urn with a thousand balls, and sixty are red, 

and nine hundred forty are black, and then you select them 

at random… twelve at a time.” According to Justice Breyer 

and the binomial theorem, if the red balls were black jurors then 

“you would expect… something like a third to a half of 

juries would have at least one black person” on them.

• Justice Scalia’s rejoinder: “We don’t have any urns here.”

Justice Breyer Meets CS109

• Should model this combinatorially

 Ball draws not independent trials (balls not replaced)

• Exact solution:

P(draw 12 black balls) =                        0.4739

P(draw ≥ 1 red ball) = 1 – P(draw 12 black balls)  0.5261

• Approximation using Binomial distribution

 Assume P(red ball) constant for every draw = 60/1000

 X = # red balls drawn.  X ~ Bin(12, 60/1000 = 0.06)

 P(X ≥ 1) = 1 – P(X = 0)  1 – 0.4759 = 0.5240

In Breyer’s description, should actually expect just over half 

of juries to have at least one black person on them
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From Discrete to Continuous

• So far, all random variables we saw were discrete

 Have finite or countably infinite values (e.g., integers)

 Usually, values are binary or represent a count

• Now it’s time for continuous random variables

 Have (uncountably) infinite values (e.g., real numbers)

 Usually represent measurements (arbitrary precision)

o Height (centimeters), Weight (lbs.), Time (seconds), etc.

• Difference between how many and how much
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Continuous Random Variables

• X is a Continuous Random Variable if there is 

function f(x) ≥ 0 for - ≤ x ≤ , such that:

• f is a Probability Density Function (PDF) if:
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Probability Density Functions

• Say f is a Probability Density Function (PDF)

 f(x) is not a probability, it is probability/units of X

 Not meaningful without some subinterval over X

 Contrast with Probability Mass Function (PMF) in 

discrete case:

where for X taking on values x1, x2, x3, ... 
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Cumulative Distribution Functions

• For a continuous random variable X, the 

Cumulative Distribution Function (CDF) is:

• Density f is derivative of CDF F:

• For continuous f and small  :
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• X is continuous random variable (CRV) with PDF:

 What is C?

 What is P(X > 1)?

Simple Example
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Disk Crashes

• X = hours before your disk crashes

 First, determine  to have actual PDF

o Good integral to know:

 What is P(50 < X < 150)?

 What is P(X < 10)?
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For continuous RV X:

Expectation and Variance

For discrete RV X:
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For both discrete and continuous RVs:

Linearly Increasing Density

• X is a continuous random variable with PDF:

 What is E[X]?

 What is Var(X)? 
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Uniform Random Variable

• X is a Uniform Random Variable: X ~ Uni(a, b)

 Probability Density Function (PDF):
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Fun with the Uniform Distribution

• X ~ Uni(0, 20)

 P(X < 6)?

 P(4 < X < 17)?
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Riding the Marguerite Bus

• Say the Marguerite bus stops at the Gates bldg. 

at 15 minute intervals (2:00, 2:15, 2:30, etc.)

 Passenger arrives at stop uniformly between 2-2:30pm

 X ~ Uni(0, 30)

• P(Passenger waits < 5 minutes for bus)?

 Must arrive between 2:10-2:15pm or 2:25-2:30pm

• P(Passenger waits > 14 minutes for bus)?

 Must arrive between 2:00-2:01pm or 2:15-2:16pm
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When to Leave For Class

• Biking to a class on campus

 Leave t minutes before class starts

 X = travel time (minutes). X has PDF:  f(x)

 If early, incur cost: c/min. If late, incur cost: k/min.

 Choose t (when to leave) to minimize E[C(X, t)]:
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Minimization via Differentiation

• What to minimize w.r.t. t:

 Differentiate E[C(X, t)] w.r.t. t, and set = 0 (to obtain t*):

o Leibniz integral rule:
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