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Pre-Midterm Material

Basic Counting Principles

Pigeonhole Principle
Inclusion Exclusion
Counting the Complement
Using symmetry

Conditional Probability

P(A | B) = P(AB)
P(B)

Law of Total Probability:

P(A) = P(A | B) · P(B) + P(A |B) · P(B)

Bayes’ Theorem:

P(A | B) =
P(B | A) · P(A)

P(B)

Network Failure Questions
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Pre-Midterm Material

Independence

E and F are independent if P(EF ) = P(E )P(F )
E and F are independent if P(E | F ) = P(E ) and
P(F | E ) = P(F )
Events E1, . . .En are independent if for every subset S of events

P

(⋂
i∈S

Ei

)
=
∏
i∈S

P(Ei )

Biased coin example from Lecture 5, slide 7
If E and F are independent and G is an arbitrary event then in
general

P(EF | G ) 6= P(E | G ) · P(F | G )

For any given G , equality in the above statement means that
E and F are Conditionally Independent given G
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Distributions

Know the mean and variance for:

Uniform distribution
Normal distribution
Geometric distribution
Binomial distribution
Poisson distribution
Hypergeometric distribution

Remember Linearity of Expectation and other useful facts
(e.g. Var [aX + b] = a2Var [X ]; in general
Var [X + Y ] 6= Var [X ] + Var [Y ]).

Remember: For any a, P(X = a) = 0 (the probability that a
continuous R.V. falls at a specific point is 0!)

Expectation is now an integral: E [X ] =
∫∞
−∞ x · f (x)dx

Use normal approximation when applicable.
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Central Limit Theorem

Central Limit Theorem: Consider i.i.d. (independent,
identically distributed) random variables X1,X2, . . . . Xi has
µ = E [Xi ] and σ2 = Var [Xi ]. Then, as n→∞

X1 + · · ·+ Xn − nµ

σ
√
n

→ N(0, 1)

Alternatively

X =
1

n

n∑
i=1

Xi ≈ N

(
µ,
σ2

n

)
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Tail Bounds

Markov’s Inequality: If X is a non-negative random variable,
then for every α > 0, we have

P(X ≥ α) ≤ E [X ]

α

Corollary

P(X ≥ αE [X ]) ≤ 1

α

Chebyshev’s Inequality: If Y is an arbitrary random variable
with E [Y ] = µ, then, for any α > 0,

P(|Y − µ| ≥ α) ≤ Var [Y ]

α2
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Tail Bounds

Chernoff Bounds: Suppose X is drawn from Bin(n, p) and
µ = E [X ] = pn Then, for any 0 < δ < 1

P(X > (1 + δ)µ) ≤ e−
δ2µ
2

P(X < (1− δ)µ) ≤ e−
δ2µ
3
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Law of Large Numbers

Weak Law of Large Numbers: Let X be the empirical mean
of i.i.d.s X1, . . . ,Xn. For any ε > 0, as n→∞

Pr
(∣∣X − µ∣∣ > ε

)
→ 0

Strong Law of Large Numbers: Same hypotheses

Pr

(
lim
n→∞

(
X1 + · · ·+ Xn

n
= µ

))
= 1
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Random Facts

If X and Y are R.V.s from the same distribution, then
Z = X + Y isn’t necessarily from the same distribution as X
and Y .

If X and Y are both normal, then so is X + Y .
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MLEs

Write an expression for the likelihood.

Convert this into the log likelihood.

Take derivatives to find the maximum.

Verify that this is indeed a maximum.

See Lecture 11 for worked examples.
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Expectation-Maximization

E-step: Computes the log-likelihood using current
parameters.

M-step: Maximize the expected log-likelihood, changing the
parameters.

Iterated until convergence is achieved.
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Hypothesis Testing

H0 is the null hypothesis

H1 is the alternative hypothesis

Likelihood Ratio = L1
L0

where L0 is the likelihood of H0 and L1
is the likelihood of H1.

Saying that alternative hypothesis is 5 times more likely than
the null hypothesis means that L1

L0
≥ 5.

Decision rule: When to reject H0.

α = P(rejected H0 but H0 was true)

β = P(accept H0 but H1 was true)
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Algorithms

Better algorithms usually trump better hardware, but both are
needed for progress

Some problems cannot be solved (e.g. the Halting Problem)

Other (intractable) problems cannot (yet?) be solved in a
reasonable amount of time (e.g. Integer Factorization)
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Sequence Alignment

Brute force solution take at least
(2n
n

)
computations of the

sequence score, which is exponential time.

Dynamic Programming decrease computation to O(n2).

IDEA: Store prior computations so that future computations
can do table look-ups.

Backtrace Algorithm: Start at the bottom right of the matrix
and find which neighboring cells could have transitioned to the
current cell under the cost function, σ. Time Bound (O(n2))

See Lecture 15 for a worked example.
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P vs. NP

Some problems cannot be computed (e.g. The Halting
Problem).

Some problems can be computed but take a long time (e.g.
SAT, 3-SAT, 3-coloring).

P - a solution is computable in polynomial time

NP - a solution can be verified in polynomial time, given a
hint that is polynomial in the input length

A ≤p B means that if you have a fast algorithm for B, you
have a fast algorithm for A.

NP-complete - In NP and as hard as the hardest problem in
NP

Any fast solution to an NP-complete problem would yield a
fast solution to all problems in NP.
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