CSE 312 Final Review: Section AA

CSE 312 TAs

December 8, 2011

General Information

General Information

- Comprehensive Midterm

General Information

- Comprehensive Midterm
- Heavily weighted toward material after the midterm

Pre-Midterm Material

Pre-Midterm Material

- Basic Counting Principles

Pre-Midterm Material

- Basic Counting Principles
- Pigeonhole Principle

Pre-Midterm Material

- Basic Counting Principles
- Pigeonhole Principle
- Inclusion Exclusion

Pre-Midterm Material

- Basic Counting Principles
- Pigeonhole Principle
- Inclusion Exclusion
- Counting the Complement

Pre-Midterm Material

- Basic Counting Principles
- Pigeonhole Principle
- Inclusion Exclusion
- Counting the Complement
- Using symmetry

Pre-Midterm Material

- Basic Counting Principles
- Pigeonhole Principle
- Inclusion Exclusion
- Counting the Complement
- Using symmetry
- Conditional Probability

Pre-Midterm Material

- Basic Counting Principles
- Pigeonhole Principle
- Inclusion Exclusion
- Counting the Complement
- Using symmetry
- Conditional Probability
- $P(A \mid B)=\frac{P(A B)}{P(B)}$

Pre-Midterm Material

- Basic Counting Principles
- Pigeonhole Principle
- Inclusion Exclusion
- Counting the Complement
- Using symmetry
- Conditional Probability
- $P(A \mid B)=\frac{P(A B)}{P(B)}$
- Law of Total Probability:

$$
P(A)=P(A \mid B) \cdot P(B)+P(A \mid \bar{B}) \cdot P(\bar{B})
$$

- Basic Counting Principles
- Pigeonhole Principle
- Inclusion Exclusion
- Counting the Complement
- Using symmetry
- Conditional Probability
- $P(A \mid B)=\frac{P(A B)}{P(B)}$
- Law of Total Probability:

$$
P(A)=P(A \mid B) \cdot P(B)+P(A \mid \bar{B}) \cdot P(\bar{B})
$$

- Bayes' Theorem:

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)}
$$

- Basic Counting Principles
- Pigeonhole Principle
- Inclusion Exclusion
- Counting the Complement
- Using symmetry
- Conditional Probability
- $P(A \mid B)=\frac{P(A B)}{P(B)}$
- Law of Total Probability:

$$
P(A)=P(A \mid B) \cdot P(B)+P(A \mid \bar{B}) \cdot P(\bar{B})
$$

- Bayes' Theorem:

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)}
$$

- Network Failure Questions

Pre-Midterm Material

Pre-Midterm Material

- Independence

Pre-Midterm Material

- Independence
- E and F are independent if $P(E F)=P(E) P(F)$

Pre-Midterm Material

- Independence
- E and F are independent if $P(E F)=P(E) P(F)$
- E and F are independent if $P(E \mid F)=P(E)$ and $P(F \mid E)=P(F)$

Pre-Midterm Material

- Independence
- E and F are independent if $P(E F)=P(E) P(F)$
- E and F are independent if $P(E \mid F)=P(E)$ and $P(F \mid E)=P(F)$
- Events $E_{1}, \ldots E_{n}$ are independent if for every subset S of events

$$
P\left(\bigcap_{i \in S} E_{i}\right)=\prod_{i \in S} P\left(E_{i}\right)
$$

- Independence
- E and F are independent if $P(E F)=P(E) P(F)$
- E and F are independent if $P(E \mid F)=P(E)$ and $P(F \mid E)=P(F)$
- Events $E_{1}, \ldots E_{n}$ are independent if for every subset S of events

$$
P\left(\bigcap_{i \in S} E_{i}\right)=\prod_{i \in S} P\left(E_{i}\right)
$$

- Biased coin example from Lecture 5 , slide 7
- Independence
- E and F are independent if $P(E F)=P(E) P(F)$
- E and F are independent if $P(E \mid F)=P(E)$ and $P(F \mid E)=P(F)$
- Events $E_{1}, \ldots E_{n}$ are independent if for every subset S of events

$$
P\left(\bigcap_{i \in S} E_{i}\right)=\prod_{i \in S} P\left(E_{i}\right)
$$

- Biased coin example from Lecture 5 , slide 7
- If E and F are independent and G is an arbitrary event then in general

$$
P(E F \mid G) \neq P(E \mid G) \cdot P(F \mid G)
$$

- Independence
- E and F are independent if $P(E F)=P(E) P(F)$
- E and F are independent if $P(E \mid F)=P(E)$ and $P(F \mid E)=P(F)$
- Events $E_{1}, \ldots E_{n}$ are independent if for every subset S of events

$$
P\left(\bigcap_{i \in S} E_{i}\right)=\prod_{i \in S} P\left(E_{i}\right)
$$

- Biased coin example from Lecture 5 , slide 7
- If E and F are independent and G is an arbitrary event then in general

$$
P(E F \mid G) \neq P(E \mid G) \cdot P(F \mid G)
$$

- For any given G, equality in the above statement means that E and F are Conditionally Independent given G

Distributions

Distributions

- Know the mean and variance for:

Distributions

- Know the mean and variance for:
- Uniform distribution

Distributions

- Know the mean and variance for:
- Uniform distribution
- Normal distribution

Distributions

- Know the mean and variance for:
- Uniform distribution
- Normal distribution
- Geometric distribution

Distributions

- Know the mean and variance for:
- Uniform distribution
- Normal distribution
- Geometric distribution
- Binomial distribution

Distributions

- Know the mean and variance for:
- Uniform distribution
- Normal distribution
- Geometric distribution
- Binomial distribution
- Poisson distribution

Distributions

- Know the mean and variance for:
- Uniform distribution
- Normal distribution
- Geometric distribution
- Binomial distribution
- Poisson distribution
- Hypergeometric distribution

Distributions

- Know the mean and variance for:
- Uniform distribution
- Normal distribution
- Geometric distribution
- Binomial distribution
- Poisson distribution
- Hypergeometric distribution
- Remember Linearity of Expectation and other useful facts (e.g. $\operatorname{Var}[a X+b]=a^{2} \operatorname{Var}[X]$; in general $\operatorname{Var}[X+Y] \neq \operatorname{Var}[X]+\operatorname{Var}[Y])$.

Distributions

- Know the mean and variance for:
- Uniform distribution
- Normal distribution
- Geometric distribution
- Binomial distribution
- Poisson distribution
- Hypergeometric distribution
- Remember Linearity of Expectation and other useful facts (e.g. $\operatorname{Var}[a X+b]=a^{2} \operatorname{Var}[X]$; in general $\operatorname{Var}[X+Y] \neq \operatorname{Var}[X]+\operatorname{Var}[Y])$.
- Remember: For any $a, P(X=a)=0$ (the probability that a continuous R.V. falls at a specific point is 0 !)

Distributions

- Know the mean and variance for:
- Uniform distribution
- Normal distribution
- Geometric distribution
- Binomial distribution
- Poisson distribution
- Hypergeometric distribution
- Remember Linearity of Expectation and other useful facts (e.g. $\operatorname{Var}[a X+b]=a^{2} \operatorname{Var}[X]$; in general $\operatorname{Var}[X+Y] \neq \operatorname{Var}[X]+\operatorname{Var}[Y])$.
- Remember: For any $a, P(X=a)=0$ (the probability that a continuous R.V. falls at a specific point is 0 !)
- Expectation is now an integral: $E[X]=\int_{-\infty}^{\infty} x \cdot f(x) d x$

Distributions

- Know the mean and variance for:
- Uniform distribution
- Normal distribution
- Geometric distribution
- Binomial distribution
- Poisson distribution
- Hypergeometric distribution
- Remember Linearity of Expectation and other useful facts (e.g. $\operatorname{Var}[a X+b]=a^{2} \operatorname{Var}[X]$; in general $\operatorname{Var}[X+Y] \neq \operatorname{Var}[X]+\operatorname{Var}[Y])$.
- Remember: For any $a, P(X=a)=0$ (the probability that a continuous R.V. falls at a specific point is 0 !)
- Expectation is now an integral: $E[X]=\int_{-\infty}^{\infty} x \cdot f(x) d x$
- Use normal approximation when applicable.

Central Limit Theorem

Central Limit Theorem

- Central Limit Theorem: Consider i.i.d. (independent, identically distributed) random variables $X_{1}, X_{2}, \ldots . \mathrm{Xi}$ has $\mu=E\left[X_{i}\right]$ and $\sigma^{2}=\operatorname{Var}\left[X_{i}\right]$. Then, as $n \rightarrow \infty$

$$
\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} \rightarrow N(0,1)
$$

Alternatively

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \approx N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

Tail Bounds

- Markov's Inequality: If X is a non-negative random variable, then for every $\alpha>0$, we have

$$
P(X \geq \alpha) \leq \frac{E[X]}{\alpha}
$$

- Markov's Inequality: If X is a non-negative random variable, then for every $\alpha>0$, we have

$$
P(X \geq \alpha) \leq \frac{E[X]}{\alpha}
$$

Corollary

$$
P(X \geq \alpha E[X]) \leq \frac{1}{\alpha}
$$

- Markov's Inequality: If X is a non-negative random variable, then for every $\alpha>0$, we have

$$
P(X \geq \alpha) \leq \frac{E[X]}{\alpha}
$$

Corollary

$$
P(X \geq \alpha E[X]) \leq \frac{1}{\alpha}
$$

- Chebyshev's Inequality: If Y is an arbitrary random variable with $E[Y]=\mu$, then, for any $\alpha>0$,

$$
P(|Y-\mu| \geq \alpha) \leq \frac{\operatorname{Var}[Y]}{\alpha^{2}}
$$

Tail Bounds

- Chernoff Bounds: Suppose X is drawn from $\operatorname{Bin}(n, p)$ and $\mu=E[X]=p n$ Then, for any $0<\delta<1$

$$
\begin{aligned}
& P(X>(1+\delta) \mu) \leq e^{-\frac{\delta^{2} \mu}{2}} \\
& P(X<(1-\delta) \mu) \leq e^{-\frac{\delta^{2} \mu}{3}}
\end{aligned}
$$

Law of Large Numbers

Law of Large Numbers

- Weak Law of Large Numbers: Let \bar{X} be the empirical mean of i.i.d.s X_{1}, \ldots, X_{n}. For any $\epsilon>0$, as $n \rightarrow \infty$

$$
\operatorname{Pr}(|\bar{X}-\mu|>\epsilon) \rightarrow 0
$$

Law of Large Numbers

- Weak Law of Large Numbers: Let \bar{X} be the empirical mean of i.i.d.s X_{1}, \ldots, X_{n}. For any $\epsilon>0$, as $n \rightarrow \infty$

$$
\operatorname{Pr}(|\bar{X}-\mu|>\epsilon) \rightarrow 0
$$

- Strong Law of Large Numbers: Same hypotheses

$$
\operatorname{Pr}\left(\lim _{n \rightarrow \infty}\left(\frac{X_{1}+\cdots+X_{n}}{n}=\mu\right)\right)=1
$$

Random Facts

Random Facts

- If X and Y are R.V.s from the same distribution, then $Z=X+Y$ isn't necessarily from the same distribution as X and Y.

Random Facts

- If X and Y are R.V.s from the same distribution, then $Z=X+Y$ isn't necessarily from the same distribution as X and Y.
- If X and Y are both normal, then so is $X+Y$.

MLEs

MLEs

- Write an expression for the likelihood.

MLEs

- Write an expression for the likelihood.
- Convert this into the log likelihood.
- Write an expression for the likelihood.
- Convert this into the log likelihood.
- Take derivatives to find the maximum.
- Write an expression for the likelihood.
- Convert this into the log likelihood.
- Take derivatives to find the maximum.
- Verify that this is indeed a maximum.
- Write an expression for the likelihood.
- Convert this into the log likelihood.
- Take derivatives to find the maximum.
- Verify that this is indeed a maximum.
- See Lecture 11 for worked examples.

Expectation-Maximization

Expectation-Maximization

- E-step: Computes the log-likelihood using current parameters.

Expectation-Maximization

- E-step: Computes the log-likelihood using current parameters.
- M-step: Maximize the expected log-likelihood, changing the parameters.

Expectation-Maximization

- E-step: Computes the log-likelihood using current parameters.
- M-step: Maximize the expected log-likelihood, changing the parameters.
- Iterated until convergence is achieved.

Hypothesis Testing

Hypothesis Testing

- H_{0} is the null hypothesis

Hypothesis Testing

- H_{0} is the null hypothesis
- H_{1} is the alternative hypothesis

Hypothesis Testing

- H_{0} is the null hypothesis
- H_{1} is the alternative hypothesis
- Likelihood Ratio $=\frac{L_{1}}{L_{0}}$ where L_{0} is the likelihood of H_{0} and L_{1} is the likelihood of H_{1}.

Hypothesis Testing

- H_{0} is the null hypothesis
- H_{1} is the alternative hypothesis
- Likelihood Ratio $=\frac{L_{1}}{L_{0}}$ where L_{0} is the likelihood of H_{0} and L_{1} is the likelihood of H_{1}.
- Saying that alternative hypothesis is 5 times more likely than the null hypothesis means that $\frac{L_{1}}{L_{0}} \geq 5$.

Hypothesis Testing

- H_{0} is the null hypothesis
- H_{1} is the alternative hypothesis
- Likelihood Ratio $=\frac{L_{1}}{L_{0}}$ where L_{0} is the likelihood of H_{0} and L_{1} is the likelihood of H_{1}.
- Saying that alternative hypothesis is 5 times more likely than the null hypothesis means that $\frac{L_{1}}{L_{0}} \geq 5$.
- Decision rule: When to reject H_{0}.

Hypothesis Testing

- H_{0} is the null hypothesis
- H_{1} is the alternative hypothesis
- Likelihood Ratio $=\frac{L_{1}}{L_{0}}$ where L_{0} is the likelihood of H_{0} and L_{1} is the likelihood of H_{1}.
- Saying that alternative hypothesis is 5 times more likely than the null hypothesis means that $\frac{L_{1}}{L_{0}} \geq 5$.
- Decision rule: When to reject H_{0}.
- $\alpha=P$ (rejected H_{0} but H_{0} was true)

Hypothesis Testing

- H_{0} is the null hypothesis
- H_{1} is the alternative hypothesis
- Likelihood Ratio $=\frac{L_{1}}{L_{0}}$ where L_{0} is the likelihood of H_{0} and L_{1} is the likelihood of H_{1}.
- Saying that alternative hypothesis is 5 times more likely than the null hypothesis means that $\frac{L_{1}}{L_{0}} \geq 5$.
- Decision rule: When to reject H_{0}.
- $\alpha=P$ (rejected H_{0} but H_{0} was true)
- $\beta=P$ (accept H_{0} but H_{1} was true $)$

Algorithms

Algorithms

- Better algorithms usually trump better hardware, but both are needed for progress

Algorithms

- Better algorithms usually trump better hardware, but both are needed for progress
- Some problems cannot be solved (e.g. the Halting Problem)

Algorithms

- Better algorithms usually trump better hardware, but both are needed for progress
- Some problems cannot be solved (e.g. the Halting Problem)
- Other (intractable) problems cannot (yet?) be solved in a reasonable amount of time (e.g. Integer Factorization)

Sequence Alignment

Sequence Alignment

- Brute force solution take at least $\binom{2 n}{n}$ computations of the sequence score, which is exponential time.

Sequence Alignment

- Brute force solution take at least $\binom{2 n}{n}$ computations of the sequence score, which is exponential time.
- Dynamic Programming decrease computation to $O\left(n^{2}\right)$.

Sequence Alignment

- Brute force solution take at least $\binom{2 n}{n}$ computations of the sequence score, which is exponential time.
- Dynamic Programming decrease computation to $O\left(n^{2}\right)$.
- IDEA:

Sequence Alignment

- Brute force solution take at least $\binom{2 n}{n}$ computations of the sequence score, which is exponential time.
- Dynamic Programming decrease computation to $O\left(n^{2}\right)$.
- IDEA: Store prior computations so that future computations can do table look-ups.

Sequence Alignment

- Brute force solution take at least $\binom{2 n}{n}$ computations of the sequence score, which is exponential time.
- Dynamic Programming decrease computation to $O\left(n^{2}\right)$.
- IDEA: Store prior computations so that future computations can do table look-ups.
- Backtrace Algorithm: Start at the bottom right of the matrix and find which neighboring cells could have transitioned to the current cell under the cost function, σ. Time Bound $\left(O\left(n^{2}\right)\right.$)

Sequence Alignment

- Brute force solution take at least $\binom{2 n}{n}$ computations of the sequence score, which is exponential time.
- Dynamic Programming decrease computation to $O\left(n^{2}\right)$.
- IDEA: Store prior computations so that future computations can do table look-ups.
- Backtrace Algorithm: Start at the bottom right of the matrix and find which neighboring cells could have transitioned to the current cell under the cost function, σ. Time Bound $\left(O\left(n^{2}\right)\right)$
- See Lecture 15 for a worked example.
- Some problems cannot be computed (e.g. The Halting Problem).
- Some problems cannot be computed (e.g. The Halting Problem).
- Some problems can be computed but take a long time (e.g. SAT, 3-SAT, 3-coloring).
- Some problems cannot be computed (e.g. The Halting Problem).
- Some problems can be computed but take a long time (e.g. SAT, 3-SAT, 3-coloring).
- \mathbf{P} - a solution is computable in polynomial time
- Some problems cannot be computed (e.g. The Halting Problem).
- Some problems can be computed but take a long time (e.g. SAT, 3-SAT, 3-coloring).
- \mathbf{P} - a solution is computable in polynomial time
- NP - a solution can be verified in polynomial time, given a hint that is polynomial in the input length
- Some problems cannot be computed (e.g. The Halting Problem).
- Some problems can be computed but take a long time (e.g. SAT, 3-SAT, 3-coloring).
- \mathbf{P} - a solution is computable in polynomial time
- NP - a solution can be verified in polynomial time, given a hint that is polynomial in the input length
- $A \leq_{p} B$ means that if you have a fast algorithm for B, you have a fast algorithm for A.
- Some problems cannot be computed (e.g. The Halting Problem).
- Some problems can be computed but take a long time (e.g. SAT, 3-SAT, 3-coloring).
- \mathbf{P} - a solution is computable in polynomial time
- NP - a solution can be verified in polynomial time, given a hint that is polynomial in the input length
- $A \leq_{p} B$ means that if you have a fast algorithm for B, you have a fast algorithm for A.
- NP-complete - In NP and as hard as the hardest problem in NP
- Some problems cannot be computed (e.g. The Halting Problem).
- Some problems can be computed but take a long time (e.g. SAT, 3-SAT, 3-coloring).
- \mathbf{P} - a solution is computable in polynomial time
- NP - a solution can be verified in polynomial time, given a hint that is polynomial in the input length
- $A \leq_{p} B$ means that if you have a fast algorithm for B, you have a fast algorithm for A.
- NP-complete - In NP and as hard as the hardest problem in NP
- Any fast solution to an NP-complete problem would yield a fast solution to all problems in NP.

