CSE 312
 Autumn 2011

P vs NP and

Computational Intractability

P vs NP

Is everything easy?
No, some problems (halting, ...) are uncomputable
e.g., see http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html Is everything computable easy?

Sadly, no ...

The Clique Problem

Given: a graph $G=(V, E)$ and an integer k
Question: is there a subset U of V with $|U| \geq k$ such that every pair of vertices in U is joined by an edge.

Some Convenient Technicalities

"Problem" - the general case
Ex: The Clique Problem: Given a graph G and an integer k, does G contain a k-clique?
"Problem Instance" - the specific cases
Ex: Does
 contain a 4-clique? (no)
Ex: Does contain a 3-clique? (yes)

Some Convenient Technicalities

Three kinds of problem: Search: Find a k-clique in G
Decision: Is there a k-clique in G
Verification: Is this a k-clique in G

Problems as Sets of "Yes" Instances
Ex: CLIQUE $=\{(\mathrm{G}, \mathrm{k}) \mid \mathrm{G}$ contains a k -clique $\}$

But we'll sometimes be a little sloppy and use CLIQUE to mean the associated search problem

Difficulty/Utility

Computational Difficulty: verify \leq decide \leq search
Utility: ditto

In fact, decision and search are often equally difficult, but whether or not that holds for a particular problem, by the above, if we could show a lower bound on time for the decision problem, that implies a lower bound for the harder, more useful search versions as well, and the decision version is mathematically simpler, so the theory has emphasized the decision forms - another convenient technicality.

Satisfiability

Boolean variables x_{1}, \ldots, x_{n} taking values in $\{0, I\}$. $0=$ false, $I=$ true
Literals

$$
x_{i} \text { or } \neg x_{i} \text { for } i=1, \ldots, n
$$

Clause
a logical OR of one or more literals
e.g. $\left(x_{1} \vee \neg x_{3} \vee x_{7} \vee x_{12}\right)$

CNF formula ("conjunctive normal form")
a logical AND of a bunch of clauses

Satisfiability

CNF formula example

$$
\left(x_{1} \vee \neg x_{3} \vee x_{7}\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee x_{5} \vee \neg x_{7}\right)
$$

If there is some assignment of 0 's and I's to the variables that makes it true then we say the formula is satisfiable the one above is, the following isn't

$$
x_{1} \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{3} \vee \neg x_{1}\right)
$$

Satisfiability: Given a CNF formula F, is it satisfiable?

Satisfiable?

$$
\begin{aligned}
& (x \vee y \vee z) \wedge(\neg x \vee y \vee \neg z) \wedge \\
& (x \vee \neg y \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge \\
& (\neg x \vee \neg y \vee \neg z) \wedge(x \vee y \vee \vee) \wedge \\
& (x \vee \neg y \vee z) \wedge(x \vee y \vee \neg z)
\end{aligned}
$$

$$
\begin{aligned}
& (x \vee y \vee z) \wedge(\neg x \vee y \vee \neg z) \wedge \\
& (x \vee \neg y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge \\
& (\neg x \vee \neg y \vee \neg z) \wedge(\neg x \vee y \vee z) \wedge \\
& (x \vee \neg y \vee z) \wedge(x \vee y \vee \neg z)
\end{aligned}
$$

More Problems

Independent-Set:
Pairs $\langle\mathrm{G}, \mathrm{k}\rangle$, where $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a graph and k is an integer, for which there is a subset U of V with $|\mathrm{U}| \geq k$ such that no two vertices in U are
 joined by an edge.
Clique:
Pairs $\langle\mathrm{G}, \mathrm{k}\rangle$, where $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a graph and k is an integer k, for which there is a subset U of V with $|U| \geq k$ such that every pair of vertices in U
 is joined by an edge.

More Problems

Euler Tour:

Graphs $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ for which there is a cycle traversing each edge once.

Hamilton Tour:

Graphs $G=(V, E)$ for which there is a simple cycle of length |V|, i.e., traversing each vertex once.
TSP:
Pairs $\langle\mathrm{G}, \mathrm{k}\rangle$, where $\mathrm{G}=(\mathrm{V}, \mathrm{E}, \mathrm{w})$ is a a weighted graph and k is an integer, such that there is a Hamilton tour of G with total weight $\leq k$.

Problems

3-Coloring:
Graphs $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ for which there is an assignment of at most 3 colors to the vertices in G such that no two adjacent vertices have the same color.

Example:

Problems

Short Path:

4-tuples $\langle\mathrm{G}, \mathrm{s}, \mathrm{t}, \mathrm{k}\rangle$, where $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a digraph with vertices s, t, and an integer k, for which there is a path from s to t of length $\leq k$

Long Path:

4-tuples $\langle\mathrm{G}, \mathrm{s}, \mathrm{t}, \mathrm{k}\rangle$, where $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a digraph with vertices s, t, and an integer k, for which there is an acyclic path from s to t of length $\geq k$

Common property of these problems: Discrete Exponential Search Loosely-find a needle in a haystack

"Answer" to a decision problem is literally just yes/ no, but there's always a somewhat more elaborate "solution" (aka "hint" or "certificate"; what the search version would report) that transparently \ddagger justifies each "yes" instance (and only those) - but it's buried in an exponentially large search space of potential solutions.
\ddagger Transparently $=$ verifiable in polynomial time

Defining NP

A decision problem L is in NP iff there is a polynomial time procedure $v(-,-)$, (the "verifier") and an integer k such that for every $\mathrm{x} \in \mathrm{L}$ there is a "hint" h with $|\mathrm{h}| \leq|\mathrm{x}|^{k}$ such that $\mathrm{v}(\mathrm{x}, \mathrm{h})=\mathrm{YES}$ and
for every $\mathrm{x} \notin \mathrm{L}$ there is no hint h with $|\mathrm{h}| \leq|\mathrm{x}|^{k}$ such that $\mathrm{v}(\mathrm{x}, \mathrm{h})=\mathrm{YES}$ ("Hints," sometimes called "certificates," or "witnesses", are just strings. Think of them as exactly what the output of the search version would be.)

Example: Clique

"Is there a k-clique in this graph?" any subset of k vertices might be a clique there are many such subsets, but I only need to find one if I knew where it was, I could describe it succinctly, e.g. "look at vertices $2,3,17,42, . . . "$,

I'd know one if I saw one: "yes, there are edges between 2 \& 3, 2 \& I7,... so it's a k-clique"
this can be quickly checked
And if there is not a k-clique, I wouldn't be fooled by a statement like "look at vertices $2,3,17,42, . . . "$

More Formally: CLIQUE is in NP

procedure $\mathrm{v}(\mathrm{x}, \mathrm{h})$
if
x is a well-formed representation of a graph
$\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and an integer k,
and
h is a well-formed representation of a k-vertex subset U of V,
and
U is a clique in G ,
then output "YES"
else output "I'm unconvinced"

Important note: this answer does NOT mean $x \notin$ CLIQUE; just means this h isn't a k-clique (but some other might be).

Correctness

For every $\mathrm{x}=(\mathrm{G}, \mathrm{k})$ such that G contains a k -clique, there is a hint h that will cause $v(x, h)$ to say YES, namely $\mathrm{h}=\mathrm{a}$ list of the vertices in such a k -clique and

No hint can fool v into saying yes if either x isn't well-formed (the uninteresting case) or if $x=(G, k)$ but G does not have any cliques of size k (the interesting case)

Example: SAT

"Is there a satisfying assignment for this Boolean formula?"
any assignment might work
there are lots of them
I only need one
if I had one I could describe it succinctly, e.g., " $x_{1}=T, x_{2}=F, \ldots, x_{n}=T$ "
I'd know one if I saw one: "yes, plugging that in, I see formula $=$ T..." this can be quickly checked
And if the formula is unsatisfiable, I wouldn't be fooled by, " $x_{1}=T$, $x_{2}=F, \ldots, x_{n}=F^{\prime \prime}$

More Formally: SAT \in NP

Hint: the satisfying assignment A
Verifier: $\mathrm{v}(\mathrm{F}, \mathrm{A})=\operatorname{syntax}(\mathrm{F}, \mathrm{A}) \& \& \operatorname{satisfies}(\mathrm{~F}, \mathrm{~A})$
Syntax: True iff F is a well-formed formula \& A is a truthassignment to its variables
Satisfies: plug A into F and evaluate
Correctness:
If F is satisfiable, it has some satisfying assignment A, and we'll recognize it
If F is unsatisfiable, it doesn't, and we won't be fooled

Keys to showing that a problem is in NP

What's the output? (must be YES/NO)
What's the input? Which are YES?
For every given YES input, is there a hint that would help? Is it polynomial length?

OK if some inputs need no hint
For any given NO input, is there a hint that would trick you?

Solving NP problems without hints

The most obvious algorithm for most of these problems is brute force:
try all possible hints; check each one to see if it works. Exponential time:
2^{n} truth assignments for n variables
n ! possible TSP tours of n vertices
$\binom{n}{k}$ possible k element subsets of n vertices etc.
...and to date, every alg, even much less-obvious ones, are slow, too

P vs NP vs Exponential Time

Theorem: Every problem in NP can be solved deterministically in exponential time

Proof: "hints" are only n^{k} long; try all $2^{n^{k}}$ possibilities, say by backtracking. If any succeed, say YES; if all fail, say NO.

P and NP

Every problem in P is in NP one doesn't even need a hint for problems in P so just ignore any hint you are given

Every problem in NP is in exponential time
l.e., $P \subseteq N P \subseteq \operatorname{Exp}$

We know $P \neq$ Exp, so either $P \neq N P$, or $N P \neq \operatorname{Exp}$ (most
 likely both)

Summary so far

Examples in NP:
SAT, short/long paths, Euler/Ham tours, clique, indp set...
Common feature/definition:
"... there is an X with property Y ..." where the property is easy (P -time) to verify, given X , but there are exponentially many potential X 's to search among.
$\mathrm{P} \subseteq \mathrm{NP} \subseteq \operatorname{Exp}$ (at least 1 containment is proper; likely both)

Some Problem Pairs

Euler Tour	Hamilton Tour
2-SAT	3-SAT
2-Coloring	3-Coloring
Min Cut	Max Cut
Shortest Path	Longest Path

P vs NP

Theory
P = NP ?
Open Problem!
I bet against it

Practice

Many interesting, useful, natural, well-studied problems known to be NP-complete
With rare exceptions, no one routinely succeeds in finding exact solutions to large, arbitrary instances

Another NP problem: Vertex Cover

Input: Undirected graph $G=(V, E)$, integer k.
Output: True iff there is a subset C of V of size $\leq \mathrm{k}$ such that every edge in E is incident to at least one vertex in C.

Example: Vertex cover of size ≤ 2.

In NP? Exercise
sin
$3 S A T \leq_{p}$ VertexCover

$3 S A T \leq_{p}$ VertexCover

$3 S A T \leq_{p}$ VertexCover

3SAT \leq_{p} VertexCover

3SAT \leq_{p} VertexCover

VertexCover Instance:
$-k=2 q$
$-G=(V, E)$
$-\mathrm{V}=\{[\mathrm{i}, \mathrm{j}] \mid 1 \leq \mathrm{i} \leq \mathrm{q}, 1 \leq \mathrm{j} \leq 3\}$
$-E=\left\{([i, j],[k, l]) \mid i=k\right.$ or $\left.y_{i j}=\neg y_{k l}\right\}$
$3 S A T \leq{ }_{p}$ VertexCover

Correctness of " 3 SAT \leq_{p} VertexCover"

Summary of reduction function f: Given formula, make graph G with one group per clause, one node per literal. Connect each to all nodes in same group, plus complementary literals $(x, \neg x)$. Output graph G plus integer $k=2 *$ number of clauses. Note: f does not know whether formula is satisfiable or not; does not know if G has k-cover; does not try to find satisfying assignment or cover.
Correctness:

- Show f poly time computable: A key point is that graph size is polynomial in formula size; mapping basically straightforward.
- Show c in 3-SAT iff $\mathrm{f}(\mathrm{c})=(\mathrm{G}, \mathrm{k})$ in VertexCover:
(\Rightarrow) Given an assignment satisfying c, pick one true literal per clause. Add other 2 nodes of each triangle to cover. Show it is a cover: 2 per triangle cover triangle edges; only true literals (but perhaps not all true literals) uncovered, so at least one end of every ($\mathrm{x}, \neg \mathrm{x}$) edge is covered.
(\Leftarrow) Given a k-vertex cover in G, uncovered labels define a valid (perhaps partial) truth assignment since no ($\mathrm{x}, \neg \mathrm{x}$) pair uncovered. It satisfies c since there is one uncovered node in each clause triangle (else some other clause triangle has >1 uncovered node, hence an uncovered edge.)

Utility of "3SAT \leq_{p} VertexCover"

Suppose we had a fast algorithm for VertexCover, then we could get a fast algorithm for 3SAT:

Given 3-CNF formula w, build Vertex

Cover instance $y=f(w)$ as above, run the fast VC alg on y; say "YES, w is satisfiable" iff VC alg says "YES, y has a vertex cover of the given size"
On the other hand, suppose no fast alg is possible for 3SAT, then we know none is possible for VertexCover either.

Subset-Sum, AKA Knapsack

KNAP $=\left\{\left(w_{1}, w_{2}, \ldots, w_{n}, C\right) \mid\right.$ a subset of the w_{i} sums to $\left.C\right\}$
$w_{i}^{\prime} s$ and C encoded in radix $r \geq 2$. (Decimal used in following example.)

Theorem: 3-SAT \leq_{p} KNAP
Pf: given formula with p variables \& q clauses, build KNAP instance with $2(p+q) w_{i}$'s, each with $(p+q)$ decimal digits. For the $2 p$ "literal" weights, H.O. p digits mark which variable; L.O. q digits show which clauses contain it. Two "slack" weights per clause mark that clause. See example below.

3-SAT \leq_{p} KNAP

Formula: $(x \vee y) \wedge(\neg x \vee y) \wedge(\neg x \vee \neg y \vee y)$

		Variables		Clauses		
		x	y	($\mathrm{x} \times \mathrm{y}$)	$(\neg x \vee y)$	$(\neg x \vee \neg y \vee y)$
	$\mathrm{w}_{1}(\mathrm{x})$	I	0	1	0	0
	$\mathrm{w}_{2}(\neg \mathrm{x})$	1	0	0	1	1
	$w_{3}(y)$		1	1	1	1
	$\mathrm{w}_{4}(\neg \mathrm{y})$		1	0	0	1
$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \text { N } \end{aligned}$	$\mathrm{w}_{5}\left(s_{11}\right)$			1	0	0
	$\mathrm{w}_{6}\left(s_{12}\right)$			I	0	0
	$\mathrm{w}_{7}\left(s_{21}\right)$				1	0
	$\mathrm{w}_{8}\left(s_{22}\right)$				1	0
	$\mathrm{w}_{9}\left(s_{31}\right)$					1
	$\mathrm{w}_{10}\left(s_{32}\right)$					1
	C	I	I	3	3	3

Correctness

Poly time for reduction is routine; details omitted. Again note that it does not look at satisfying assignment(s), if any, nor at subset sums, but the problem instance it builds captures one via the other...
If formula is satisfiable, select the literal weights corresponding to the true literals in a satisfying assignment. If that assignment satisfies k literals in a clause, also select $(3-k)$ of the "slack" weights for that clause. Total will equal C.
Conversely, suppose KNAP instance has a solution. Note ≤ 5 one's per column, so no "carries" in sum (recall - weights are decimal); i.e., columns are decoupled. Since H.O. p digits of C are I, exactly one of each pair of literal weights included in the subset, so it defines a valid assignment. Since L.O. q digits of C are 3, but at most 2 "slack" weights contribute to it , at least one of the selected literal weights must be I in that clause, hence the assignment satisfies the formula.

SAT has a (superficially) special role

Cook's Theorem: Every problem in NP can be reduced to SAT

Why?
Intuitively, "solutions" are just bit strings,
"There exists a solution" \rightarrow "there exists an assignment"
Computers are just big, dumb piles of Boolean logic, so "the verifier says YES" \rightarrow "That assignment satisfies this formula."
I won't prove Cook's theorem, but will give a few examples.

NP-complete problem: 3-Coloring

Input: An undirected graph G=(V,E).
Output: True iff there is an assignment of at most 3 colors to the vertices in G such that no two adjacent vertices have the same color.

Example:

In NP? Exercise

3-Coloring \leq_{p} SAT

Given $G=(V, E)$
variables r_{i}, g_{i}, b_{i} for each i in V encode color

$$
\begin{aligned}
& \wedge \wedge_{i \in \vee}\left[\left(r_{i} \vee g_{i} \vee b_{i}\right) \wedge\right. \\
& \left.\quad\left(\neg r_{i} \vee \neg g_{i}\right) \wedge\left(\neg g_{i} \vee \neg b_{i}\right) \wedge\left(\neg b_{i} \vee \neg r_{i}\right)\right] \wedge \\
& \wedge\left({ }_{(i, j)} \in E\left(\neg r_{i} \vee \neg r_{j}\right) \wedge\left(\neg g_{i} \vee \neg g_{j}\right) \wedge\left(\neg b_{i} \vee \neg b_{j}\right)\right]
\end{aligned}
$$

adj nodes \Leftrightarrow diff colors
no node gets 2
every node gets a color

Vertex cover \leq_{p} SAT

Given $G=(V, E)$ and k
variables x_{i}, for each i in V encode inclusion of i in cover

Cook's Theorem

Every problem in NP is reducible to SAT

Idea of proof is extension of above examples, but done in a general way, based on the definition of NP - show how the SAT formula can simulate whatever (polynomial time) computation the verifier does.

Why is SAT NP-complete?

Cook's proof is somewhat involved; I won't show it. But its essence is not so hard to grasp:

```
Generic "NP" problems: expo. search- is there a poly size "solution," verifiable by computer in poly time
```

```
"SAT":
```

is there a (poly size) assignment satisfying the formula

Encode "solution" using Boolean variables. SAT mimics "is there a solution" via "is there an assignment". Digital computers just do Boolean logic, and "SAT" can mimic that, too, hence can verify that the assignment actually encodes a solution.

Reductions

Utility of "3SAT \leq_{p} VertexCover"

Suppose we had a fast algorithm for VertexCover, then we could get a fast algorithm for 3SAT:
Given 3-CNF formula w, build Vertex

Cover instance $y=f(w)$ as above, run the fast VC alg on y; say "YES, w is satisfiable" iff VC alg says "YES, y has a vertex cover of the given size"
On the other hand, suppose no fast alg is possible for 3SAT, then we know none is possible for VertexCover either.

Utility of " 3 SAT \leq_{p} KNAP"

Suppose we had a fast algorithm for Knapsack, then we could get a fast algorithm for 3SAT:
Given 3-CNF formula w, build Knap instance $y=f(w)$ as above, run the fast Knap alg on y; say "YES, w is satisfiable"

					Clauses	
			y	$(\mathrm{x} \vee \mathrm{y})$	$\begin{gathered} (-\times v \\ y) \end{gathered}$	$\begin{gathered} (-x \vee \\ -y) \end{gathered}$
	w_{1} (x)	1	0	1	0	0
	$w_{2}(\neg x)$	1	0	0	1	1
	$w_{3}(y)$		1	1	1	0
	$\mathrm{w}_{4}(\neg \mathrm{y})$		1	0	0	1
$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{u}} \\ & \text { ت } \end{aligned}$	$w_{5}\left(s_{11}\right)$			1	0	0
	$\mathrm{w}_{6}\left(s_{12}\right)$			1	0	0
	$\mathrm{w}_{7}\left(s_{21}\right)$				1	0
	$\mathrm{w}_{8}\left(s_{22}\right)$				I	0
	$\mathrm{w}_{9}\left(s_{31}\right)$					I
	$\mathrm{w}_{10}\left(s_{32}\right)$					1
	C	I	1	3	3	3

If, on the other hand, no fast alg is possible for 3SAT, then we know none is possible for KNAP either.

" $3 \mathrm{SAT} \leq_{\mathrm{p}} \mathrm{VC} / \mathrm{KNAP}$ " Retrospective

Previous slides: two suppositions
Somewhat clumsy to have to state things that way.
Alternative: abstract out the key elements, give it a name ("polynomial time reduction"), then properties like the above always hold.

Polynomial-Time Reductions

Definition: Let A and B be two problems.
We say that A is polynomially reducible to $B\left(A \leq_{p} B\right)$
if there exists a polynomial-time algorithm f that converts each instance x of problem A to an instance $f(x)$ of B such that:
x is a YES instance of A iff $f(x)$ is a YES instance of B

$$
x \in A \Leftrightarrow f(x) \in B
$$

Polynomial-Time Reductions (cont.)

Define: A \leq_{p} B "A is polynomial-time reducible to B ", iff there is a polynomial-time computable function f such that: $x \in A \Leftrightarrow f(x) \in B$
"complexity of A " \leq "complexity of B " + "complexity of f"
(I) $A \leq_{p} B$ and $B \in P \Rightarrow A \in P$
(2) $A \leq_{p} B$ and $A \notin P \Rightarrow B \notin P$
(3) $A \leq_{p} B$ and $B \leq_{p} C \Rightarrow A \leq_{p} C$ (transitivity)

NP-Completeness

Definition: Problem B is NP-hard if every problem in NP is polynomially reducible to B .

Definition: Problem B is NP-complete if:
(I) B belongs to NP, and
(2) B is NP-hard.

Ex: VertexCover is NP-complete

a) For very problem A in NP, $\mathrm{A} \leq_{p} 3$-SAT [Cook]
b) 3 -SAT \leq_{p} VertexCover
c) so $A \leq_{p}$ VertexCover
[transitivity]
d) VertexCover is in NP
[above]
Therefore VertexCover is also NP-complete

So, poly-time alg for VertexCover \Rightarrow poly-time algs for everything in NP; exponential lower bound on any prob in NP \Rightarrow exp lower bd for VertexCover

"I can't find an efficient algorithm, but neither can all these famous people."
[Garey \& Johnson, 1979]

Summary

Big-O - good
P - good
Exp - bad
Exp, but hints help? NP
NP-hard, NP-complete - bad (I bet)
To show NP-complete - reductions
NP-complete = hopeless? - no, but you
need to lower your expectations:
heuristics, approximations and/or small instances.

P

Many important problems are in P: solvable in deterministic polynomial time

Details are more the fodder of algorithms courses, but we've seen a few examples here, plus many other examples in other courses
Few problems not in P are routinely solved;
For those that are, practice is usually restricted to small instances, or we're forced to settle for approximate, suboptimal, or heuristic "solutions"
A major goal of complexity theory is to delineate the boundaries of what we can feasibly solve

NP

The tip-of-the-iceberg in terms of problems conjectured not to be in P, but a very important tip, because
a) they're very commonly encountered, probably because
b) they arise naturally from basic "search" and "optimization" questions.

Definition: poly time verifiable, "guess and check", "is there a..." - all useful

NP-completeness

Defn \& Properties of \leq_{p}

A is NP-hard: everything in NP reducible to A
A is NP-complete: NP-hard and in NP
"the hardest problems in NP"
"All alike under the skin"
Most known natural problems in NP are complete
\#I: 3CNF-SAT
Many others: Clique, VertexCover, HamPath, Circuit-SAT,...

