
CSE 312���
Autumn 2011	


P vs NP and 	

Computational Intractability	




P vs NP	


Is everything easy?  	

    No, some problems (halting, …) are uncomputable	


    e.g., see http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html	

Is everything computable easy?	


    Sadly, no …    	
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The Clique Problem	


Given: a graph G=(V,E) and an integer k	

Question: is there a subset U of V with���
|U| ≥ k such that every pair of vertices in U is joined by an 
edge.	
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"Problem" – the general case	

Ex: The Clique Problem: Given a graph G and an integer k, 
does G contain a k-clique?	


"Problem Instance" – the specific cases	

Ex: Does                     contain a 4-clique? (no)	

Ex: Does                     contain a 3-clique? (yes)	


Some Convenient Technicalities	
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Three kinds of problem:	

	
Search: Find a k-clique in G          	
(3,              ) →	

	
Decision: Is there a k-clique in G  	
(3,              ) → yes    	

	
Verification: Is this a k-clique in G 	
(3,              ) → no	


Problems as Sets of "Yes" Instances	

Ex: CLIQUE = { (G,k) | G contains a k-clique }	


E.g., (                 , 4) ∉  CLIQUE	

E.g., (                 , 3) ∈  CLIQUE	


But we’ll sometimes be a little sloppy and use CLIQUE 
to mean the associated search problem	


Some Convenient Technicalities	




Difficulty/Utility	


Computational Difficulty: verify ≤ decide ≤ search	

Utility: ditto	


	

In fact, decision and search are often equally difficult, but 
whether or not that holds for a particular problem, by the 
above, if we could show a lower bound on time for the 
decision problem, that implies a lower bound for the harder, 
more useful search versions as well, and the decision version 
is mathematically simpler, so the theory has emphasized the 
decision forms – another convenient technicality.	
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Satisfiability	


Boolean variables x1, ..., xn	

taking values in {0,1}.  0=false, 1=true	


Literals	

xi or ¬xi for i = 1, ..., n	


Clause	

a logical OR of one or more literals	

e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)	


CNF formula (“conjunctive normal form”)	

a logical AND of a bunch of clauses	
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Satisfiability	


CNF formula example	

(x1 ∨ ¬x3 ∨ x7) ∧ (¬x1 ∨ ¬x4 ∨ x5 ∨ ¬x7)	


If there is some assignment of 0’s and 1’s to the 
variables that makes it true then we say the formula 
is satisfiable	


the one above is, the following isn’t	


x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ (¬x3 ∨ ¬x1)	


Satisfiability:  Given a CNF formula F, is it satisfiable?	
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Satisfiable?	

(	
 x	
 ∨	
 y	
 ∨	
 z	
 )	
 ∧	
 (	
 ¬x	
 ∨	
 y	
 ∨	
 ¬z	
 )	
 ∧	


(	
 x	
 ∨	
 ¬y	
 ∨	
 z	
 )	
 ∧	
 (	
 ¬x	
 ∨	
 ¬y	
 ∨	
 z	
 )	
 ∧	


(	
 ¬x	
 ∨	
 ¬y	
 ∨	
 ¬z	
 )	
 ∧	
 (	
 x	
 ∨	
 y	
 ∨	
 z	
 )	
 ∧	


(	
 x	
 ∨	
 ¬y	
 ∨	
 z	
 )	
 ∧	
 (	
 x	
 ∨	
 y	
 ∨	
 ¬z	
 )	


(	
 x	
 ∨	
 y	
 ∨	
 z	
 )	
 ∧	
 (	
 ¬x	
 ∨	
 y	
 ∨	
 ¬z	
 )	
 ∧	


(	
 x	
 ∨	
 ¬y	
 ∨	
 ¬z	
 )	
 ∧	
 (	
 ¬x	
 ∨	
 ¬y	
 ∨	
 z	
 )	
 ∧	


(	
 ¬x	
 ∨	
 ¬y	
 ∨	
 ¬z	
 )	
 ∧	
 (	
 ¬x	
 ∨	
 y	
 ∨	
 z	
 )	
 ∧	


(	
 x	
 ∨	
 ¬y	
 ∨	
 z	
 )	
 ∧	
 (	
 x	
 ∨	
 y	
 ∨	
 ¬z	
 )	
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More Problems	


Independent-Set: 	

Pairs ⟨G,k⟩, where G=(V,E) is a graph and k is 
an integer, for which there is  a subset U of V  
with |U| ≥ k such that no two vertices in U are 
joined by an edge.	


Clique: 	

Pairs ⟨G,k⟩, where G=(V,E) is a graph and k is 
an integer k, for which there is a subset U of V 
with |U| ≥ k such that every pair of vertices in U 
is joined by an edge.	
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More Problems	


Euler Tour: 	

Graphs G=(V,E) for which there is a cycle traversing each 
edge once.	


Hamilton Tour: 	

Graphs G=(V,E) for which there is a simple cycle of length 
|V|, i.e., traversing each vertex once.	


TSP: 	

Pairs ⟨G,k⟩, where G=(V,E,w) is a a weighted graph and k is 
an integer, such that there is a Hamilton tour of G with 
total weight ≤ k.	
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Problems	


3-Coloring: 	

Graphs G=(V,E) for which there is an assignment of at most 
3 colors to the vertices in G such that no two adjacent 
vertices have the same color.	

	

Example:	

	

	




Problems	


Short Path:	

   4-tuples ⟨G, s, t, k⟩, where G=(V,E) is a digraph with 
vertices s, t, and an integer k, for which there is a path from 
s to t of length ≤ k	


	


Long Path:	

   4-tuples ⟨G, s, t, k⟩, where G=(V,E) is a digraph with 
vertices s, t, and an integer k, for which there is an acyclic 
path from s to t of length ≥ k	
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Common property of these problems: ���
Discrete Exponential Search���

 Loosely–find a needle in a haystack	


“Answer” to a decision problem is literally just yes/
no, but there’s always a somewhat more elaborate 
“solution” (aka “hint” or “certificate”; what the 
search version would report) that transparently‡ 
justifies each “yes” instance (and only those) – but 
it’s buried in an exponentially large search space of 
potential solutions. 	

	

	

‡Transparently = verifiable in polynomial time	




16	


Defining NP	


A decision problem L is in NP iff there is a polynomial time 
procedure v(-,-), (the “verifier”) and an integer k such that 	


for every x ∈ L there is a “hint” h with |h| ≤ |x|k such that v(x,h) = YES ���
and	

for every x ∉ L there is no hint h with |h| ≤ |x|k such that v(x,h) = YES	


(“Hints,” sometimes called “certificates,” or “witnesses”, are just strings. 
Think of them as exactly what the output of the search version would 
be.)	




Example: Clique	


“Is there a k-clique in this graph?”	

any subset of k vertices might be a clique	


there are many such subsets, but I only need to find one	

if I knew where it was, I could describe it succinctly, e.g. 
"look at vertices 2,3,17,42,...", 	


I'd know one if I saw one: "yes, there are edges between ���
2 & 3, 2 & 17,... so it's a k-clique”	


this can be quickly checked	


And if there is not a k-clique, I wouldn’t be fooled by a 
statement like “look at vertices 2,3,17,42,...”  	
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More Formally: CLIQUE is in NP	


procedure v(x,h)	

if 	

    x is a well-formed representation of  a graph ���
    G = (V, E) and an integer k, 	

and 	

    h is a well-formed representation of a k-vertex ���
    subset U of V, 	

and 	

	
U is a clique in G, 	


then output "YES"	

else output "I'm unconvinced" 	


Important note: this answer does 
NOT mean x ∉ CLIQUE; just 
means this h isn’t a k-clique (but 
some other might be). 	
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Correctness	


For every x = (G,k) such that G contains a k-clique, 
there is a hint h that will cause v(x,h) to say YES, 
namely h = a list of the vertices in such a k-clique	

and	


No hint can fool v into saying yes if either x isn't 
well-formed (the uninteresting case) or if x = (G,k) 
but G does not have any cliques of size k (the 
interesting case)	




Example: SAT	


“Is there a satisfying assignment for this Boolean 
formula?”	


any assignment might work      	


there are lots of them     	

I only need one     	


if I had one I could describe it succinctly, e.g., “x1=T, x2=F, ..., xn=T"      	


I'd know one if I saw one: "yes, plugging that in, I see formula = T...” 
this can be quickly checked	


And if the formula is unsatisfiable, I wouldn’t be fooled by , “x1=T, 
x2=F, ..., xn=F"      	
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More Formally: SAT ∈ NP	


Hint: the satisfying assignment A	

Verifier: v(F,A) = syntax(F,A) && satisfies(F,A)	


Syntax: True iff  F is a well-formed formula & A is a truth-
assignment to its variables	


Satisfies: plug A into F and evaluate	


Correctness:	

If F is satisfiable, it has some satisfying assignment A, and 
we’ll recognize it	


If F is unsatisfiable, it doesn’t, and we won’t be fooled	
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Keys to showing  that ���
a problem is in NP	


What's the output?  (must be YES/NO)	

What's the input?  Which are YES?	


For every given YES input, is there a hint that would help?  Is 
it polynomial length?	


OK if some inputs need no hint	


For any given NO input, is there a hint that would trick you?	
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The most obvious algorithm for most of these 
problems is brute force:	


try all possible hints; check each one to see if it works.	

Exponential time:	


2n truth assignments for n variables	


n! possible TSP tours of n vertices	


     possible k element subsets of n vertices	


etc.	


…and to date, every alg, even much less-obvious 
ones, are slow, too 	


!
"

#
$
%

&
k
n

Solving NP problems without hints	
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nk!

2nk!

accept 

Needle  
in the  

haystack 

P vs NP vs Exponential Time	


Theorem: Every problem in 
NP can be solved 
deterministically in 
exponential time	

	

Proof: “hints” are only nk 
long; try all 2nk possibilities, 
say by backtracking.  If any 
succeed, say YES; if ���
all fail, say NO.	
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NP!

P!

Exp!
And  
   worse! 

P and NP	


Every problem in P is in NP	

one doesn’t even need a hint for 
problems in P so just ignore any 
hint you are given	

	


Every problem in NP is in 
exponential time	

	

I.e., P ⊆ NP ⊆ Exp	

We know P ≠ Exp, so either 
P ≠NP, or NP ≠ Exp (most 
likely both)	




Summary so far	


Examples in NP:	

	
SAT, short/long paths, Euler/Ham tours, clique, indp set…	


Common feature/definition:	

	
“… there is an X with property Y …” where the property 
is easy (P-time) to verify,  given X, but there are 
exponentially many potential X’s to search among. 	


	

P  ⊆ NP ⊆ Exp (at least 1 containment is proper; likely both)	
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Euler Tour	


2-SAT	

2-Coloring	


Min Cut	


Shortest Path	
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Hamilton Tour	


3-SAT	

3-Coloring	


Max Cut	

Longest Path	


Similar pairs; seemingly 
different computationally!

Superficially different; 
sim

ilar com
putationally!

Some Problem Pairs	
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P vs NP	


Theory	

P = NP ?	

Open Problem!	


I bet against it	

	


Practice	

Many interesting, useful, 
natural, well-studied 
problems known to be 
NP-complete	

With rare exceptions, no 
one routinely succeeds in 
finding exact solutions to 
large, arbitrary instances	
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Another NP problem: ���
Vertex Cover	


Input: Undirected graph G = (V, E), integer k.	

Output: True iff there is a subset C of V of ���
size ≤ k such that every edge in E is incident to at 
least one vertex in C.	

	

Example: Vertex cover of size ≤ 2.	

	

	

In NP?  Exercise	
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3SAT ≤p VertexCover 	
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3SAT ≤p VertexCover 	
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3SAT ≤p VertexCover 	
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k=6 

3SAT ≤p VertexCover 	
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k=6 

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

3SAT ≤p VertexCover 	


(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1  ∨ x3)	
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f                                                                           =	


       	


3-SAT Instance:!
– Variables: x1, x2, …     !
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3!
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ i ≤ q!
– Formula: c = c1 ∧ c2 ∧ … ∧ cq!

VertexCover Instance:!
–  k = 2q!
–  G = (V, E)!
–  V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }!

–  E = { ( [i,j], [k,l] ) | i = k or yij = ¬ykl }!

3SAT ≤p VertexCover 	
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k=6 

3SAT ≤p VertexCover 	


   	




Correctness of “3SAT ≤p VertexCover”	


Summary of reduction function f:  Given formula, make graph G with one group 
per clause, one node per literal.  Connect each to all nodes in same group, plus 
complementary literals (x, ¬x). Output graph G plus integer k = 2 * number of 
clauses.  Note: f does not know whether formula is satisfiable or not; does not know if 
G has k-cover; does not try to find satisfying assignment or cover.	

Correctness:	

 • Show f poly time computable: A key point is that graph size is polynomial in 
formula size; mapping basically straightforward.  	

 • Show c in 3-SAT iff f(c)=(G,k) in VertexCover: ���
(⇒) Given an assignment satisfying c, pick one true literal per clause.  Add other 
2 nodes of each triangle to cover.  Show it is a cover: 2 per triangle cover triangle 
edges; only true literals (but perhaps not all true literals) uncovered, so at least 
one end of every (x, ¬x) edge is covered. ���
(⇐) Given a k-vertex cover in G, uncovered labels define a valid (perhaps partial) 
truth assignment since no (x, ¬x) pair uncovered.  It satisfies c since there is one 
uncovered node in each clause triangle (else some other clause triangle has > 1 
uncovered node, hence an uncovered edge.)	
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(x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨x3)!

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

Utility of “3SAT ≤p VertexCover”	


Suppose we had a fast algorithm ���
for VertexCover, then we could ���
get a fast algorithm for 3SAT:	


Given 3-CNF formula w, build Vertex���
Cover instance y = f(w) as above, run the fast ���
VC alg on y; say “YES, w is satisfiable” iff VC alg says “YES, 
y has a vertex cover of the given size”	


On the other hand, suppose no fast alg is possible 
for 3SAT, then we know none is possible for 
VertexCover either.	




Subset-Sum, AKA Knapsack	


KNAP= { (w1, w2, …, wn, C) | a subset of the wi sums to C }	

	


wi’s and C encoded in radix r ≥ 2.  (Decimal used in 
following example.)	


	


Theorem:  3-SAT  ≤p  KNAP	

Pf: given formula with p variables & q clauses, build KNAP instance with ���

2(p+q) wi’s, each with (p+q) decimal digits. For the 2p “literal” 
weights, H.O. p digits mark which variable; L.O. q digits show which 
clauses contain it. Two “slack” weights per clause mark that clause. ���
See example below.	
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3-SAT  ≤p  KNAP	


Variables	
 Clauses	

x	
 y	
 (x ∨ y) 	
 (¬x ∨ y) 	
 (¬x ∨ ¬y ∨ y) 	


Li
te

ra
ls
	
 w1  (  x)	
 1	
 0	
 1	
 0	
 0	


w2  (¬x) 	
 1	
 0	
 0	
 1	
 1	

w3  (  y)	
 1	
 1	
 1	
 1	

w4  (¬y)	
 1	
 0	
 0	
 1	


Sl
ac

k	


w5  (s11)	
 1	
 0	
 0	

w6  (s12)	
 1	
 0	
 0	

w7  (s21)	
 1	
 0	

w8  (s22)	
 1	
 0	

w9  (s31)	
 1	

w10 (s32)	
 1	

C	
 1	
 1	
 3	
 3	
 3	
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Formula: (x ∨ y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y ∨ y)   



Correctness	


Poly time for reduction is routine; details omitted.  Again note that it 
does not look at satisfying assignment(s), if any, nor at subset sums, 
but the problem instance it builds captures one via the other... 	


If formula is satisfiable, select the literal weights corresponding to the 
true literals in a satisfying assignment. If that assignment satisfies k 
literals in a clause, also select (3 – k) of the “slack” weights for that 
clause.  Total will equal C.	


Conversely, suppose KNAP instance has a solution.  Note ≤ 5 one’s per 
column, so no “carries” in sum (recall – weights are decimal); i.e., 
columns are decoupled.  Since H.O. p digits of C are 1, exactly one of 
each pair of literal weights included in the subset, so it defines a valid 
assignment. Since L.O. q digits of C are 3, but at most 2 “slack” 
weights contribute to it, at least one of the selected literal weights 
must be 1 in that clause, hence the assignment satisfies the formula.	
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SAT has a (superficially) special role	


Cook’s Theorem: Every  problem in NP can be reduced to 
SAT	


	


Why? 	

Intuitively, “solutions” are just bit strings, 	


“There exists a solution” → “there exists an assignment”	

Computers are just big, dumb piles of Boolean logic, so “the 

verifier says YES” → “That assignment satisfies this 
formula.”	


I won’t prove Cook’s theorem, but will give a few examples.	
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NP-complete problem: 3-Coloring	


Input: An undirected graph G=(V,E).	

Output: True iff there is an assignment of at most 3 
colors to the vertices in G such that no two 
adjacent vertices have the same color.	

	

Example:	

	

	

In NP?  Exercise	




3-Coloring ≤p SAT	


Given G = (V, E)	

variables ri, gi, bi for each i in V encode color	

	


∧i ∈ V [(ri ∨ gi ∨ bi) ∧ 	

	
(¬ri ∨ ¬gi) ∧ (¬gi ∨ ¬bi) ∧ (¬bi ∨ ¬ri)] ∧	


∧(i,j) ∈ E [(¬ri ∨ ¬rj) ∧ (¬gi ∨ ¬gj) ∧ (¬bi ∨ ¬bj)]	
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adj nodes ⇔ diff colors	

no node gets 2 	

every node gets a color	




Vertex cover ≤p SAT	


Given G = (V, E) and k	

variables xi, for each i in V encode inclusion of i in 
cover	


	

∧(i,j) ∈ E (xi ∨ xj) ∧ “number of True xi is ≤ k” 	
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every edge covered 
by one end or other	


possible in 3 CNF, but technically messy; 
basically a “counter”, counting 1’s	




Cook’s Theorem	


Every problem in NP is reducible to SAT	

	


Idea of proof is extension of above examples, but done in a 
general way, based on the definition of NP – show how 
the SAT formula can simulate whatever (polynomial time) 
computation the verifier does.	
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Why is SAT NP-complete?	


Cook’s proof is somewhat involved; I won’t show it.  
But its essence is not so hard to grasp:	
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Encode “solution” using Boolean variables.  SAT mimics “is there a solution” 
via “is there an assignment”.  Digital computers just do Boolean logic, and 
“SAT” can mimic that, too, hence can verify that the assignment actually 
encodes a solution.	


Generic “NP” problems: expo. search–	

is there a poly size “solution,” verifiable 
by computer in poly time	


“SAT”:	

is there a (poly size) assignment 
satisfying the formula



Reductions	
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(x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨x3)!

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

Utility of “3SAT ≤p VertexCover”	


Suppose we had a fast algorithm ���
for VertexCover, then we could ���
get a fast algorithm for 3SAT:	


Given 3-CNF formula w, build Vertex���
Cover instance y = f(w) as above, run the fast ���
VC alg on y; say “YES, w is satisfiable” iff VC alg says “YES, 
y has a vertex cover of the given size”	


On the other hand, suppose no fast alg is possible 
for 3SAT, then we know none is possible for 
VertexCover either.	
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Utility of “3SAT ≤p KNAP”	


Suppose we had a fast algorithm ���
for Knapsack, then we could ���
get a fast algorithm for 3SAT:	


Given 3-CNF formula w, build Knap���
instance y = f(w) as above, run the fast ���
Knap alg on y; say “YES, w is satisfiable” ���
iff Knap alg says “YES, a subset sums to C”	


If, on the other hand, no fast alg is possible for 
3SAT, then we know none is possible for KNAP 
either.	


Variables	
 Clauses	

x	
 y	
 (x ∨ y) 	
 (¬x ∨ 

y) 	

(¬x ∨ 
¬y) 	


Li
te

ra
ls
	
 w1  (  x)	
 1	
 0	
 1	
 0	
 0	


w2  (¬x) 	
 1	
 0	
 0	
 1	
 1	

w3  (  y)	
 1	
 1	
 1	
 0	

w4  (¬y)	
 1	
 0	
 0	
 1	


Sl
ac

k	


w5  (s11)	
 1	
 0	
 0	

w6  (s12)	
 1	
 0	
 0	

w7  (s21)	
 1	
 0	

w8  (s22)	
 1	
 0	

w9  (s31)	
 1	

w10 (s32)	
 1	

C	
 1	
 1	
 3	
 3	
 3	
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“3SAT ≤p VC/KNAP” Retrospective	


Previous slides: two suppositions	

Somewhat clumsy to have to state things that way.	


Alternative: abstract out the key elements, give it a name 
(“polynomial time reduction”), then properties like the 
above always hold. 	
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Polynomial-Time Reductions	


Definition: Let A and B be two problems.	

We say that A is polynomially reducible to B (A  ≤p B) 
if there exists a polynomial-time algorithm f that 
converts each instance x of problem A to an 
instance f(x) of B such that: ���
	

x is a YES instance of A  iff  f(x) is a YES instance of B	


	

x ∈ A   ⇔   f(x) ∈ B 	
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polynomial 

W
hy

 th
e 

no
ta

tio
n?

 

Polynomial-Time Reductions (cont.)	


Define: A ≤p B  “A is polynomial-time reducible to 
B”, iff there is a polynomial-time computable 
function f such that:   x ∈ A   ⇔   f(x) ∈ B 	

	


“complexity of A” ≤ “complexity of B” + “complexity of f”	

	


(1)  A ≤p B  and  B ∈ P   ⇒   A ∈ P 	

(2)  A ≤p B  and  A ∉ P   ⇒   B ∉ P  	

(3)  A ≤p B  and  B ≤p C   ⇒   A ≤p C  (transitivity)	
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NP-Completeness	


Definition: Problem B is NP-hard if 
every problem in NP is polynomially 
reducible to B.	


	

Definition: Problem B is NP-complete 
if:	


(1) B belongs to NP, and 	


(2) B is NP-hard.	


NP!

P!

Exp!

NP-Hard	


NP-Complete	
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Ex: VertexCover is NP-complete	


a) For very problem A in NP, A ≤p 3-SAT 	
[Cook]	

b) 3-SAT ≤p VertexCover 	
 	
 	
[above]	

c) so A ≤p VertexCover 	
 	
  	
   [transitivity]	


d) VertexCover is in NP	
 	
 	
        [above]	


Therefore VertexCover is also NP-complete	

	

So, poly-time alg for VertexCover ⇒ poly-time algs 
for everything in NP; exponential lower bound on 
any prob in NP ⇒ exp lower bd for VertexCover	




“I can’t find an efficient algorithm, but neither can all these 
famous people.”                 [Garey & Johnson, 1979] 

The Big Boss is 
IN!
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NP!

P!

Exp!
Worse… 

NP-C Summary	


Big-O    	
–  good	

P          	
–  good	

Exp       	
–  bad	

Exp, but hints help?  NP	

NP-hard, NP-complete – bad (I bet)	

To show NP-complete – reductions	

NP-complete = hopeless? – no, but you ���
  need to lower your expectations: ���
  heuristics, approximations and/or small instances.	




P	


Many important problems are in P: solvable in deterministic 
polynomial time	


	
Details are more the fodder of algorithms courses, but we’ve seen a 
few examples here, plus many other examples in other courses	


Few problems not in P are routinely solved; 	

	
For those that are, practice is usually restricted to small instances, or 
we’re forced to settle for approximate, suboptimal, or heuristic 
“solutions”	


A major goal of complexity theory is to delineate the 
boundaries of what we can feasibly solve	
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NP	


The tip-of-the-iceberg in terms of problems conjectured not 
to be in P, but a very important tip, because	


	
a) they’re very commonly encountered, probably because	


	
b) they arise naturally from basic “search” and 
“optimization” questions.	


	


Definition: poly time verifiable, “guess and check”, “is there 
a…” – all useful	
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NP-completeness	


Defn & Properties of ≤p	

	


A is NP-hard: everything in NP reducible to A	

A is NP-complete: NP-hard and in NP	


	
“the hardest problems in NP”	


	
“All alike under the skin”	

Most known natural problems in NP are complete	


	
#1: 3CNF-SAT	

	
Many others: Clique, VertexCover, HamPath, Circuit-SAT,…	
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