Algorithms and Computational Complexity: an Overview

Autumn 2011
 Larry Ruzzo

Design of Algorithms - a taste

design methods
common or important types of problems
analysis of algorithms - efficiency

Complexity \& intractability - a taste

solving problems in principle is not enough
algorithms must be efficient
some problems have no efficient solution
NP-complete problems
important \& useful class of problems whose solutions
(seemingly) cannot be found efficiently

complexity example

Cryptography (e.g. RSA, SSL in browsers)
Secret: p,q prime, say 512 bits each
Public: n which equals $p \times q, 1024$ bits
In principle
there is an algorithm that given n will find p and q :
try all $2^{512} \approx 1.3 \times 10^{154}$ possible p's (but that's kinda big...
for comparison, the age of the universe is $\approx 5 \times 10^{29}$ picosec)
In practice
no fast algorithm known for this problem (on non-quantum computers)
security of RSA depends on this fact
(and research in "quantum computing" is strongly driven by the possibility of changing this)

Moore's Law and the exponential improvements in hardware...

Ex: sparse linear equations over 25 years

IO orders of magnitude improvement!

algorithms or hardware?

algorithms or hardware?

algorithms or hardware?

The N-Body Problem:

algorithms: a definition

Procedure to accomplish a task or solve a well-specified problem

Well-specified: know what all possible inputs look
like and what output looks like given them
"accomplish" via simple, well-defined steps
Ex: sorting names (via comparison)
Ex: checking for primality (via +, -, *, /, \leq)

Printed circuit-board company has a robot arm that solders components to the board

Time: proportional to total distance the arm must move from initial rest position around the board and back to the initial position

For each board design, find best order to do the soldering

Input: Given a set S of n points in the plane Output: The shortest cycle tour that visits each point in the set S.

Better known as "TSP"

How might you solve it?

Start at some point P_{0} Walk first to its nearest neighbor P_{I}
Walk to the nearest unvisited neighbor P_{2}, then nearest unvisited
P_{3}, \ldots until all points have been visited
Then walk back to P_{0}

heuristic:

A rule of thumb, simplification, or educated guess that reduces or limits the search for solutions in domains that are difficult and poorly understood. May be good, but usually not guaranteed to give the best or fastest solution. (And often difficult to analyze precisely.)

an input where nn works badly

Repeatedly join the closest pair of points (such that result can still be part of a single loop in the end. I.e., join endpoints, but not points in middle, of path segments already created.)

How does this work on our bad example?

8

a bad example for closest pair

a bad example for closest pair

"Brute Force Search":
For each of the $n!=n(n-I)(n-2) \ldots I$ orderings of the points, check the length of the cycle; Keep the best one

The two incorrect algorithms were greedy
Often very natural \& tempting ideas
They make choices that look great "locally" (and never reconsider them)
When greed works, the algorithms are typically efficient BUT: often does not work - you get boxed in
Our correct alg avoids this, but is incredibly slow
20 ! is so large that checking one billion per second would take 2.4 billion seconds (around 70 years!)
And growing: $n!\sim \sqrt{2 \pi n} \cdot(n / e)^{n} \sim 2^{O}(\mathrm{n} \log \mathrm{n})$

Algorithms are important
Many performance gains outstrip Moore's law
Simple problems can be hard
Factoring, TSP, many others
Simple ideas don't always work
Nearest neighbor, closest pair heuristics
Simple algorithms can be very slow Brute-force factoring, TSP
A point we hope to make: for some problems, even the best algorithms are slow

A brief overview of the theory of algorithms Efficiency \& asymptotic analysis
Some scattered examples of simple problems where clever algorithms help
A brief overview of the theory of intractability Especially NP-complete problems
"Basics every educated CSE student should know"

The complexity of an algorithm associates a number $T(n)$, the worst-case time the algorithm takes, with each problem size n.

Mathematically,
$\mathrm{T}: \mathrm{N}+\rightarrow \mathrm{R}+$
i.e., T is a function mapping positive integers
(problem sizes) to positive real numbers (number of steps).

computational complexity: general goals

Asymptotic growth rate, i.e., characterize growth rate of worst-case run time as a function of problem size, up to a constant factor, e.g. $T(n)=O\left(n^{2}\right)$

Why not try to be more precise?
Average-case, e.g., is hard to define, analyze
Technological variations (computer, compiler, OS, ...) easily 10x or more
Being more precise is a ton of work
A key question is "scale up": if I can afford this today, how much longer will it take when my business is $2 x$ larger? (E.g. today: cn^{2}, next year: $\mathrm{c}(2 \mathrm{n})^{2}=4 \mathrm{cn}^{2}: 4 \times$ longer.) Big-O analysis is adequate to address this.

computational complexity

polynomial vs exponential

For all $r>\mid$ (no matter how small) and all $d>0$, (no matter how large) $n^{d}=O\left(r^{n}\right)$.

In short, every exponential grows faster than every polynomial!

P : Running time $O\left(n^{d}\right)$ for some constant d (d is independent of the input size n)

Nice scaling property: there is a constant c s.t. doubling n , time increases only by a factor of c .
(E.g., $\mathrm{c} \sim 2^{\mathrm{d}}$)

Contrast with exponential: For any constant c, there is a d such that $n \rightarrow n+d$ increases time by a factor of more than c.

$$
\text { (E.g., } c=100 \text { and } d=7 \text { for } 2^{n} \text { vs } 2^{n+7} \text {) }
$$

why it matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

	n	$n \log _{2} n$	n^{2}	n^{3}	$1.5{ }^{n}$	2^{n}	n !
$n=10$	$<1 \mathrm{sec}$	4 sec					
$n=30$	$<1 \mathrm{sec}$	18 min	10^{25} years				
$n=50$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	11 min	36 years	very long
$n=100$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	12,892 years	10^{17} years	very long
$n=1,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	18 min	very long	very long	very long
$n=10,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	2 min	12 days	very long	very long	very long
$n=100,000$	$<1 \mathrm{sec}$	2 sec	3 hours	32 years	very long	very long	very long
$n=1,000,000$	1 sec	20 sec	12 days	31,710 years	very long	very long	very long
not only get very big, but do so abruptly, which likely yields erratic performance on small instances							

Next year's computer will be $2 x$ faster. If I can solve problem of size n_{0} today, how large a problem can I solve in the same time next year?

Complexity	Increase	E.g. $\mathrm{T}=10^{12}$		
$\mathrm{O}(\mathrm{n})$	$\mathrm{n}_{0} \rightarrow 2 \mathrm{n}_{0}$	10^{12}	\rightarrow	2×10^{12}
$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{n}_{0} \rightarrow \sqrt{ } 2 \mathrm{n}_{0}$	10^{6}	\rightarrow	1.4×10^{6}
$\mathrm{O}\left(\mathrm{n}^{3}\right)$	$\mathrm{n}_{0} \rightarrow \sqrt[3]{ } 2 \mathrm{n}_{0}$	10^{4}	\rightarrow	1.25×10^{4}
$2^{\mathrm{n} / 10}$	$\mathrm{n}_{0} \rightarrow \mathrm{n}_{0}+10$	400	\rightarrow	410
2^{n}	$\mathrm{n}_{0} \rightarrow \mathrm{n}_{0}+1$	40	\rightarrow	41

Typical initial goal for algorithm analysis is to find an
asymptotic
upper bound on
worst case running time
as a function of problem size
This is rarely the last word, but often helps separate good algorithms from blatantly poor ones - concentrate on the good ones!

> Point is not that n^{2000} is a nice time bound, or that the differences among n and 2 n and n^{2} are negligible.

Rather, simple theoretical tools may not easily capture such differences, whereas exponentials are qualitatively different from polynomials, so more amenable to theoretical analysis.
"My problem is in P " is a starting point for a more detailed analysis
"My problem is not in P" may suggest that you need to shift to a more tractable variant, or otherwise readjust expectations

