CSE 312 Autumn 2011

The Expectation-Maximization Algorithm

Previously:
 How to estimate μ given data

For this problem, we got a nice, closed form, solution, allowing calculation of the μ, σ that maximize the likelihood of the observed data.

We're not always so lucky...

More Complex Example

This?

(A modeling decision, not a math problem...,
but if later, what math?)

A Real Example: CpG content of human gene promoters

"A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters" Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417

Gaussian Mixture Models / Model-based Clustering

Parameters θ
means
variances
mixing parameters τ_{1}
$f\left(x \mid \mu_{1}, \sigma_{1}^{2}\right) \quad f\left(x \mid \mu_{2}, \sigma_{2}^{2}\right)$
P.D.F.
μ_{1}
μ_{2}
$\sigma_{1}^{2} \quad \sigma_{2}^{2}$
$\tau_{1} \quad \tau_{2}=1-\tau_{1}$

Likelihood

$$
\begin{aligned}
& L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \tau_{1}, \tau_{2}\right) \\
& \quad=\prod_{i=1}^{n} \sum_{j=1}^{2} \tau_{j} f\left(x_{i} \mid \mu_{j}, \sigma_{j}^{2}\right)
\end{aligned}
$$

No closedform max

A What-lf Puzzle

Likelihood θ

$$
\left.\begin{array}{rl}
L\left(x_{1}, x_{2}, \ldots, x_{n} \mid\right. & \overbrace{\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \tau_{1}, \tau_{2}}
\end{array}\right)
$$

Messy: no closed form solution known for finding θ maximizing L

But what if we knew the hidden data?

$$
z_{i j}= \begin{cases}1 & \text { if } x_{i} \text { drawn from } f_{j} \\ 0 & \text { otherwise }\end{cases}
$$

EM as Egg vs Chicken

IF z_{ij} known, could estimate parameters θ
E.g., only points in cluster 2 influence μ_{2}, σ_{2}

IF parameters θ known, could estimate $\mathbf{z}_{i j}$

$$
\text { E.g., | }\left|x_{i}-\mu_{1}\right| / \sigma_{1} \ll\left|x_{i}-\mu_{2}\right| / \sigma_{2} \Rightarrow P\left[z_{1}=\mid\right]>P\left[z_{12}=1\right]
$$

\qquad
But we know neither; (optimistically) iterate:
E: calculate expected $z_{i j}$, given parameters
M: calc "MLE" of parameters, given $E\left(z_{i j}\right)$
Overall, a clever "hill-climbing" strategy

Simple Version: "Classification EM"

If $\mathrm{E}\left[\mathrm{z}_{\mathrm{ij}}\right]<.5$, pretend $\mathrm{z}_{\mathrm{ij}}=0 ; \mathrm{E}\left[\mathrm{z}_{\mathrm{ij}}\right]>.5$, pretend it's I
I.e., classify points as component 0 or I

Now recalc θ, assuming that partition (standard MLE)
Then recalc $\mathrm{E}\left[\mathrm{z}_{\mathrm{i}}\right]$, assuming that θ
Then re-recalc θ, assuming new $\mathrm{E}\left[\mathrm{z}_{\mathrm{i}}\right]$, etc., etc.
"Full EM" is a bit more involved, (to account for uncertainty in classification) but this is the crux.

Full EM

x_{i} 's are known; θ unknown. Goal is to find MLE θ of:

$$
L\left(x_{1}, \ldots, x_{n} \mid \theta\right)
$$

Would be easy if $z_{i j}$'s were known, i.e., consider:

$$
L\left(x_{1}, \ldots, x_{n}, z_{11}, z_{12}, \ldots, z_{n 2} \mid \theta\right)
$$

But $z_{i j}$'s aren't known.
Instead, maximize expected likelihood of visible data

$$
E\left(L\left(x_{1}, \ldots, x_{n}, z_{11}, z_{12}, \ldots, z_{n 2} \mid \theta\right)\right)
$$

where expectation is over distribution of hidden data ($z_{i j}$'s)

The E-step:

 Find $E\left(z_{i j}\right)$, i.e., $P\left(z_{i j}=I\right)$Assume θ known \& fixed
A (B): the event that x_{i} was drawn from $f_{1}\left(f_{2}\right)$
D: the observed datum x_{i}
Expected value of $z_{i l}$ is $P(A \mid D)$

$$
\begin{aligned}
P(A \mid D) & =\frac{P(D \mid A) P(A)}{P(D)} \\
P(D) & =P(D \mid A) P(A)+P(D \mid B) P(B) \\
& =f_{1}\left(x_{i} \mid \theta_{1}\right) \tau_{1}+f_{2}\left(x_{i} \mid \theta_{2}\right) \tau_{2}
\end{aligned}
$$

Repeat for each x_{i}

Qonnorecer ■ike|inOOC

Recall:

$$
z_{1 j}= \begin{cases}1 & \text { if } x_{1} \text { drawn from } f_{j} \\ 0 & \text { otherwise }\end{cases}
$$

so, correspondingly,

$$
L\left(x_{1}, z_{1 j} \mid \theta\right)= \begin{cases}\tau_{1} f_{1}\left(x_{1} \mid \theta\right) & \text { if } z_{11}=1 \\ \tau_{2} f_{2}\left(x_{1} \mid \theta\right) & \text { otherwise }\end{cases}
$$

Formulas with "if's" are messy; can we blend more smoothly? Yes, many possibilities. Idea 1:

$$
L\left(x_{1}, z_{1 j} \mid \theta\right)=z_{11} \cdot \tau_{1} f_{1}\left(x_{1} \mid \theta\right)+z_{12} \cdot \tau_{2} f_{2}\left(x_{1} \mid \theta\right)
$$

Idea 2 (Better):

$$
L\left(x_{1}, z_{1 j} \mid \theta\right)=\left(\tau_{1} f_{1}\left(x_{1} \mid \theta\right)\right)^{z_{11}} \cdot\left(\tau_{2} f_{2}\left(x_{1} \mid \theta\right)\right)^{z_{12}}
$$

M-step:

Find θ maximizing $E(\log ($ Likelihood $))$

(For simplicity, assume $\sigma_{1}=\sigma_{2}=\sigma ; \tau_{1}=\tau_{2}=.5=\tau$)

$$
L(\vec{x}, \vec{z} \mid \theta)=\prod_{1 \leq i \leq n} \frac{\tau}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\sum_{1 \leq j \leq 2} z_{i j} \frac{\left(x_{i}-\mu_{j}\right)^{2}}{2 \sigma^{2}}\right)
$$

$E[\log L(\vec{x}, \vec{z} \mid \theta)]=E\left[\sum_{1 \leq i \leq n}\left(\log \tau-\frac{1}{2} \log 2 \pi \sigma^{2}-\sum_{1 \leq j \leq 2} z_{i j} \frac{\left(x_{i}-\mu_{j}\right)^{2}}{2 \sigma^{2}}\right)\right]$
wrt dist of z_{ij}

$$
=\sum_{1 \leq i \leq n}\left(\log \tau-\frac{1}{2} \log 2 \pi \sigma^{2}-\sum_{1 \leq j \leq 2} E\left[z_{i j}\right] \frac{\left(x_{i}-\mu_{j}\right)^{2}}{2 \sigma^{2}}\right)
$$

Find θ maximizing this as before, using $E\left[z_{i j}\right]$ found in E-step. Result: $\mu_{j}=\sum_{i=1}^{n} E\left[z_{i j}\right] x_{i} / \sum_{i=1}^{n} E\left[z_{i j}\right]$ (intuit: avg, weighted by subpop prob)

2 Component Mixture

$$
\sigma_{1}=\sigma_{2}=1 ; \tau=0.5
$$

		mu1	-20.00		-6.00		-5.00		-4.99
		mu2	6.00		0.00		3.75		3.75
x1	-6	211		$5.11 \mathrm{E}-12$		$1.00 \mathrm{E}+00$		$1.00 \mathrm{E}+00$	
x2	-5	$\mathbf{2 2 1}$		$2.61 \mathrm{E}-23$		$1.00 \mathrm{E}+00$		$1.00 \mathrm{E}+00$	
x3	-4	z31		$1.33 \mathrm{E}-34$		$9.98 \mathrm{E}-01$		$1.00 \mathrm{E}+00$	
x4	0	241		$9.09 \mathrm{E}-80$		$1.52 \mathrm{E}-08$		$4.11 \mathrm{E}-03$	
x5	4	251		$6.19 \mathrm{E}-125$		$5.75 \mathrm{E}-19$		$2.64 \mathrm{E}-18$	
x6	5	z61		3.16E-136		$1.43 \mathrm{E}-21$		$4.20 \mathrm{E}-22$	
x7	6	z71		$1.62 \mathrm{E}-147$		$3.53 \mathrm{E}-24$		$6.69 \mathrm{E}-26$	

Essentially converged in 2 iterations
(Excel spreadsheet on course web)

Applications

Clustering is a remarkably successful exploratory data analysis tool

Web-search, information retrieval, gene-expression, ...
Model-based approach above is one of the leading ways to do it
Gaussian mixture models widely used
With many components, empirically match arbitrary distribution Often well-justified, due to "hidden parameters" driving the visible data
EM is extremely widely used for "hidden-data" problems
Hidden Markov Models

EM Summary

Fundamentally a maximum likelihood parameter estimation problem

Useful if hidden data, and if analysis is more tractable when $0 / I$ hidden data z known

Iterate:

> E-step: estimate $E(z)$ for each z, given θ
> M-step: estimate θ maximizing $E[\log$ likelihood] given $E[z][$ where "E[log $L]$ " is wrt random $z \sim E[z]=p(z=1)]$

EM Issues

Under mild assumptions, EM is guaranteed to increase likelihood with every E-M iteration, hence will converge.
But it may converge to a local, not global, max. (Recall the 4-bump surface...)
Issue is intrinsic (probably), since EM is often applied to problems (including clustering, above) that are NP-hard (next 3 weeks!)
Nevertheless, widely used, often effective

