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CSE 312
Autumn 2011

MLE: Maximum Likelihood Estimators
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Reminder:  population or 
distribution versus sample
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Maximum Likelihood Estimators

Learning From Data: 
MLE
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Parameter Estimation

Assuming sample x1, x2, ..., xn is from a 
parametric distribution f(x|θ), estimate θ.

E.g.:  Given sample HHTTTTTHTHTTTHH 
of (possibly biased) coin flips, estimate 

            θ = probability of Heads

f(x|θ) is the Bernoulli probability mass function with parameter θ



Likelihood
P(x | θ):  Probability of event x given model θ
Viewed as a function of x (fixed θ), it’s a probability

E.g., Σx P(x | θ) = 1

Viewed as a function of θ (fixed x), it’s a likelihood
E.g., Σθ P(x | θ) can be anything; relative values of interest.  
E.g., if θ = prob of heads in a sequence of coin flips then
    P(HHTHH | .6) > P(HHTHH | .5), 
I.e., event HHTHH is more likely when θ = .6 than θ = .5

And what θ make HHTHH most likely?
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Likelihood Function
P( HHTHH | θ ): 

Probability of HHTHH, 
given P(H) = θ:

θ θ4(1-θ)
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One (of many) approaches to param. est.
Likelihood of (indp) observations x1, x2, ..., xn

As a function of θ, what θ maximizes the 
likelihood of the data actually observed
Typical approach:                   or

Maximum Likelihood 
Parameter Estimation

L(x1, x2, . . . , xn | θ) =
n�

i=1

f(xi | θ)

∂

∂θ
L(#x | θ) = 0 ∂

∂θ
log L(�x | θ) = 0
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(Also verify it’s max, not min, & not better on boundary)

Example 1
n coin flips, x1, x2, ..., xn;   n0 tails, n1 heads,  n0 + n1 = n;  

θ = probability of heads

 

Observed fraction of 
successes in sample is 
MLE of success 
probability in population

dL/dθ = 0
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Parameter Estimation
Assuming sample x1, x2, ..., xn is from a 
parametric distribution f(x|θ), estimate θ.

E.g.:  Given n normal samples, 
estimate mean & variance

f(x) = 1√
2πσ2 e−(x−µ)2/(2σ2)

θ = (µ,σ2)
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Ex2: I got data; a little birdie tells me 
it’s normal, and promises σ2 = 1
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X          X  XX    X  XXX               X
Observed Data

x →
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µ ± !

μ

1

Which is more likely: (a) this?
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X          X  XX    X  XXX               X
Observed Data

μ unknown, σ2 = 1
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µ ± !

μ
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Which is more likely:  (b) or this?
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X          X  XX    X  XXX               X
Observed Data

μ unknown, σ2 = 1
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µ ± !

μ
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Which is more likely:  (c) or this?
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X          X  XX    X  XXX               X
Observed Data

μ unknown, σ2 = 1



-3 -2 -1 0 1 2 3

µ ± !

μ

1

Which is more likely:  (c) or this?
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X          X  XX    X  XXX               X
Observed Data

Looks good by eye, but how do I optimize my estimate of μ  ?

μ unknown, σ2 = 1
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Ex. 2: xi ∼ N(µ,σ2), σ2 = 1, µ unknown

And verify it’s max, 
not min & not better 
on boundary

 

Sample mean is MLE of 
population mean

dL/dθ = 0



Ex3: I got data; a little birdie tells me 
it’s normal (but does not tell me σ2)
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X          X  XX    X  XXX               X
Observed Data

x →
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µ ± !

μ
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Which is more likely: (a) this?
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X          X  XX    X  XXX               X
Observed Data

μ, σ2  both unknown

μ ± 1
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µ ± !

μ
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Which is more likely: (b) or this?
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X          X  XX    X  XXX               X
Observed Data

μ, σ2  both unknown

μ ± 3                 
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µ ± !

μ
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Which is more likely:  (c) or this?
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X          X  XX    X  XXX               X
Observed Data

μ, σ2  both unknown

μ ± 1



-3 -2 -1 0 1 2 3

µ ± !

μ

Which is more likely:  (d) or this?
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X          X  XX    X  XXX               X
Observed Data

μ, σ2  both unknown

μ ± 0.5



-3 -2 -1 0 1 2 3

µ ± !

μ

Which is more likely:  (d) or this?
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X          X  XX    X  XXX               X
Observed Data

Looks good by eye, but how do I optimize my estimates of μ & σ ?
μ, σ2  both unknown

μ ± 0.5
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Ex 3: xi ∼ N(µ,σ2), µ,σ2 both unknown
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Sample mean is MLE of 
population mean, again

In general, a problem like this results in 2 equations in 2 unknowns.  
Easy in this case, since θ2 drops out of the ∂/∂θ1 = 0 equation

Likelihood 
surface
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Ex. 3, (cont.)

lnL(x1, x2, . . . , xn|θ1, θ2) =
�

1≤i≤n

−1
2

ln 2πθ2 −
(xi − θ1)2

2θ2

∂
∂θ2

lnL(x1, x2, . . . , xn|θ1, θ2) =
�

1≤i≤n

−1
2

2π

2πθ2
+

(xi − θ1)2

2θ2
2

= 0

θ̂2 =
��

1≤i≤n(xi − θ̂1)2
�

/n = s̄2

Sample variance is MLE of 
population variance



Summary
MLE is one way to estimate parameters from data
You choose the form of the model (normal, binomial, ...)
Math chooses the value(s) of parameter(s)
Has the intuitively appealing property that the parameters 
maximize the likelihood of the observed data; basically just 
assumes your sample is “representative”

Of course, unusual samples will give bad estimates (estimate normal 
human heights from a sample of NBA stars?) but that is an unlikely event

Often, but not always, MLE has other desirable properties like 
being unbiased, or at least consistent
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