
6. random variables

CSE 312,  2011 Autumn,  W.L.Ruzzo
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A random variable is some (usually numeric) function of the 
outcome, not in the outcome itself.  
Ex.

Let H be the number of Heads when 20 coins are tossed
Let T be the total of 2 dice rolls
Let X be the number of coin tosses needed to see 1st head

Note; even if the underlying experiment has “equally likely 
outcomes,” the associated random variable may not 

Outcome H P(H)
TT 0 P(H=0) = 1/4
TH 1

 P(H=1) = 1/2
HT 1

 P(H=1) = 1/2

HH 2 P(H=2) = 1/4

}



20 balls numbered 1, 2, ..., 20
Draw 3 without replacement
Let X = the maximum of the numbers on those 3 balls

What is P(X ≥ 17) 

Alternatively:

 

numbered balls
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first head
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Flip a (biased) coin repeatedly until 1st head observed
How many flips?  Let X be that number.

P(X=1) = P(H)     = p
P(X=2) = P(TH)   = (1-p)p
P(X=3) = P(TTH) = (1-p)2p
...

Check that it is a valid probability distribution:



A discrete random variable is one taking on a countable 
number of possible values.
Ex:

X = sum of 3 dice,   3 ≤ X ≤ 18, X∈N
Y = number of 1st head in seq of coin flips,   1 ≤ Y,  Y∈N
Z = largest prime factor of (1+Y),    Z ∈ {2, 3, 5, 7, 11, ...}

If X is a discrete random variable taking on values from a 
countable set T ⊆ R, then

is called the probability mass function.  Note:

 

probability mass functions
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Let X be the number of heads observed in n coin flips

Probability mass function:

 

head count
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The cumulative distribution function for a random variable X is 
the function F: →[0,1] defined by 

                        F(a) = P[X≤a]

Ex: if X has probability mass function given by:

cdf
pmf

 

cumulative distribution function
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For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)

For the equally-likely outcomes case, this is just the average of the 
possible random values of X

For unequally-likely outcomes, it is again the average of the possible 
random values of X, weighted by their respective probabilities

Ex 1:  Let X = value seen rolling a fair die  p(1), p(2), ..., p(6) = 1/6

Ex 2:  Coin flip; X = +1 if H (win $1), -1 if T (lose $1)

  E[X] = (+1)•p(+1) + (-1)•p(-1) = 1•(1/2) +(-1)•(1/2) = 0

 

expectation
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average of random values, weighted 
by their respective probabilities



For a discrete r.v. X with p.m.f. p(•), the expectation of X, aka expected 
value or mean, is

E[X] = Σx xp(x)

Another view:  A 2-person gambling game.  If X is how much you 
win playing the game once, how much would you expect to win, on 
average, per game when repeatedly playing?

Ex 1:  Let X = value seen rolling a fair die  p(1), p(2), ..., p(6) = 1/6
If you win X dollars for that roll, how much do you expect to win?

Ex 2:  Coin flip; X = +1 if H (win $1), -1 if T (lose $1)
  E[X] = (+1)•p(+1) + (-1)•p(-1) = 1•(1/2) +(-1)•(1/2) = 0
“a fair game”: in repeated play you expect to win as much as you 
lose.  Long term net gain/loss = 0.

 

expectation
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average of random values, weighted 
by their respective probabilities



Let X be the number of flips up to & including 1st head 
observed in repeated flips of a biased coin.  If I pay you $1 
per flip, how much money would you expect to make?
  

A calculus trick:

So (*) becomes:

E.g.:
p=1/2;   on average head every   2nd flip
p=1/10; on average, head every 10th flip.

 

32

first head

dy0/dy = 0

How much 
would you 
pay to play?



Calculating E[g(X)]:
Y=g(X) is a new r.v.  Calc P[Y=j], then apply defn:

       X = sum of 2 dice rolls                      Y = g(X) = X mod 5

 

expectation of  a function of  a random variable
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j q(j) = P[Y = j]q(j) = P[Y = j] j•q(j)-

0

1

2

3

4

4/36+3/36 =7/36 0/36-

5/36+2/36 =7/36 7/36-

1/36+6/36+1/36 =8/36 16/36-

2/36+5/36 =7/36 21/36-

3/36+4/36 =7/36 28/36-

72/36-

i p(i) = P[X=i] i•p(i)

2 1/36 2/36

3 2/36 6/36

4 3/36 12/36

5 4/36 20/36

6 5/36 30/36

7 6/36 42/36

8 5/36 40/36

9 4/36 36/36

10 3/36 30/36

11 2/36 22/36

12 1/36 12/36

252/36E[X] = Σi ip(i) = 252/36 = 7

E[Y] = Σj jq(j) =  72/36  = 2



Calculating E[g(X)]:  Another way – add in a different order, 
using P[X=...] instead of calculating P[Y=...]

       X = sum of 2 dice rolls                      Y = g(X) = X mod 5

 

expectation of  a function of  a random variable
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j q(j) = P[Y = j]q(j) = P[Y = j] j•q(j)-

0

1

2

3

4

4/36+3/36 =7/36 0/36-

5/36+2/36 =7/36 7/36-

1/36+6/36+1/36 =8/36 16/36-

2/36+5/36 =7/36 21/36-

3/36+4/36 =7/36 28/36-

72/36-

i p(i) = P[X=i] g(i)•p(i)

2 1/36 2/36

3 2/36 6/36

4 3/36 12/36

5 4/36 0/36

6 5/36 5/36

7 6/36 12/36

8 5/36 15/36

9 4/36 16/36

10 3/36 0/36

11 2/36 2/36

12 1/36 2/36

72/36E[g(X)] = Σi g(i)p(i) =    252/3= 2

E[Y] = Σj jq(j) =  72/36  = 2



Above example is not a fluke.

Theorem: if Y = g(X), then E[Y] = Σi g(xi)p(xi), where 
xi, i = 1, 2, ... are all possible values of X.
Proof: Let  yj, j = 1, 2, ... be all possible values of  Y.

 

expectation of  a function of  a random variable

35

xi6

xi1

xi3

X Y
g

yj1

yj2

xi2

xi4

xi5

yj3

Note that Sj = { xi | g(xi)=yj } is a 
partition of the domain of g.



 

properties of  expectation
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A & B each bet $1, then flip 2 coins:

Let X be A’s net gain: +1, 0, -1, resp.:

What is E[X]?

E[X]  = 1•1/4 + 0•1/2 + (-1)•1/4  =  0

What is E[X2]?

E[X2] = 12•1/4 + 02•1/2 + (-1)2•1/4 = 1/2

HH A wins $2
HT Each takes 

back $1TH
Each takes 
back $1

TT B wins $2

P(X = +1) = 1/4
P(X = 0) = 1/2
P(X = -1) = 1/4

Note:
 E[X2] ≠ E[X]2
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properties of  expectation

Linearity of expectation, I

For any constants a, b:  E[aX + b] = aE[X] + b

Proof:

Example:
Q: In the 2-person coin game above, what is E[2X+1]?
A: E[2X+1] = 2E[X]+1 = 2•0 + 1 = 1



Linearity, II
Let  X and Y be two random variables derived from 
outcomes of a single experiment.  Then

Proof:  Assume the sample space S is countable.  (The result is true 
without this assumption, but I won’t prove it.)  Let X(s),  Y(s) be the 
values of these r.v.’s for outcome s∈S.
Claim:  

Proof: similar to that for “expectation of a function of an r.v.,” i.e., the 
events “X=x” partition S, so sum above can be rearranged to match 
the definition of 

Then:
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properties of  expectation

True even if X, Y dependentE[X+Y] = E[X] + E[Y]

E[X+Y] = Σs∈S(X[s] + Y[s]) p(s)
            = Σs∈SX[s] p(s) + Σs∈SY[s] p(s) = E[X] + E[Y]
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properties of  expectation

Example

X = # of heads in one coin flip, where P(X=1) = p.
What is E(X)?

E[X] = 1•p + 0 •(1-p) = p

Let Xi, 1 ≤ i ≤ n,  be # of H in flip of coin with P(Xi=1) = pi

What is the expected number of heads when all are flipped?
E[ΣiXi] = ΣiE[Xi] = Σipi

Special case: p1 = p2 = ... = p : 
E[# of heads in n flips] = pn
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properties of  expectation

Note:
Linearity is special!
It is not true in general that 

E[X•Y]	

= E[X] • E[Y]
E[X2] 	

 = E[X]2

E[X/Y] 	

= E[X] / E[Y]
E[asinh(X)] = asinh(E[X])
	

 •
	

 •
	

 •

← counterexample  above
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risk

Alice & Bob are gambling (again).  X = Alice’s gain per flip:

E[X] = 0

                      . . .   Time passes   . . .

Alice (yawning) says “let’s raise the stakes”

E[Y] = 0, as before.   
Are you (Bob) equally happy to play the new game?



variance
 

42

E[X] measures the “average” or “central tendency” of X.
What about its variability?

If E[X] = μ, then E[|x-μ|] seems like a natural quantity to 
look at: how much do we expect X to deviate from its 
average.  Unfortunately, it’s a bit inconvenient 
mathematically; following is easier/more common.

Definition
The variance of a random variable X with mean E[X] = μ is
Var[X] = E[(X-μ)2], often denoted σ2.

The standard deviation of X is σ = √Var[X]



 

what  does variance tell us?

The variance of a random variable X with mean E[X] = μ is
Var[X] = E[(X-μ)2], often denoted σ2.

1:
Square always ≥ 0, and exaggerated as X moves away 
from μ, so Var[X] emphasizes deviation from the mean.

II:
Numbers vary a lot depending on exact distribution of X, 
but typically X is 

within μ ± σ   ~66% of the time, and 
within μ ± 2σ ~95% of the time.

(We’ll see the reasons for this soon.)
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mean and variance

μ = E[X] is about location; σ = √Var(X) is about spread
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σ≈2.2 

σ≈6.1

μ

μ

# heads in 20 flips, p=.5

# heads in 150 flips, p=.5
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risk

Alice & Bob are gambling (again).  X = Alice’s gain per flip:

E[X] = 0	

 	

 	

 	

 	

 Var[X] = 1

                      . . .   Time passes   . . .

Alice (yawning) says “let’s raise the stakes”

E[Y] = 0, as before.   	

	

 	

 	

 Var[Y] = 1,000,000
Are you (Bob) equally happy to play the new game?



 

example

Two games:
a) flip 1 coin, win Y = $100 if heads,  $-100 if tails
b) flip 100 coins, win Z = (#(heads) - #(tails)) dollars

Same expectation in both: E[Y] = E[Z] = 0
Same extremes in both: max gain = $100; max loss = $100 

But 
variability 
is very 
different:

σZ = 10 

σY = 100      
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properties of  variance
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properties of  variance
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Example:
    What is Var[X] when X is outcome of one fair die?

    E[X] = 7/2, so



Var[aX+b] = a2 Var[X]

Ex: 

 

properties of  variance
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   E[X] = 0
Var[X] = 1

        Y = 1000 X
   E[Y] = E[1000 X] = 1000 E[x] = 0
Var[Y] = Var[1000 X] 
           =106Var[X] = 106



In general:

Var[X+Y] ≠ Var[X] + Var[Y]

Ex 1:

Let X = ±1 based on 1 coin flip

As shown above,  E[X] = 0, Var[X] = 1

Let Y = -X; then Var[Y] = (-1)2Var[X] = 1

But X+Y = 0, always, so Var[X+Y] = 0

Ex 2:

As another example, is Var[X+X] = 2Var[X]?

 

properties of  variance
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a zoo of  (discrete) random variables
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bernoulli random variables

An experiment results in “Success” or “Failure”
X is a random indicator variable (1=success, 0=failure)
    P(X=1) = p   and    P(X=0) = 1-p
X is called a Bernoulli random variable:  X ~ Ber(p)
E[X] = E[X2] = p
Var(X) = E[X2] – (E[X])2 = p – p2 = p(1-p)

Examples:
coin flip
random binary digit
whether a disk drive crashed

52

Jacob (aka James, Jacques) 
Bernoulli, 1654 – 1705 



 

binomial random variables

Consider n independent random variables Yi ~ Ber(p) 
X = Σi Yi is the number of successes in n trials
X is a Binomial random variable:  X ~ Bin(n,p)
 

By Binomial theorem, 
Examples

# of heads in n coin flips
# of 1’s in a randomly generated length n bit string
# of disk drive crashes in a 1000 computer cluster

   E[X] = pn
Var(X) = p(1-p)n	

 	

 	



53

←(proof below, twice)



 

binomial pmfs
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binomial pmfs
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using

k=1 gives:

hence:

letting 
j = i-1

 

mean and variance of  the binomial
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;  k=2 gives E[X2]=np[(n-1)p+1] 



 

products of  independent r.v.s
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Theorem: If X & Y are independent, then E[X•Y] = E[X]•E[Y]
Proof:

Note: NOT true in general; see earlier example E[X2]≠E[X]2

independence



Theorem: If X & Y are independent, then 
	

 	

 Var[X+Y] = Var[X]+Var[Y]

Proof: Let

 

variance of  independent r.v.s is additive
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Var(aX+b) = a2Var(X)    

(Bienaymé, 1853)



 

mean, variance of  binomial r.v.s
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disk failures

A RAID-like disk array consists of n drives, 
each of which will fail independently with 
probability p.  Suppose it can operate 
effectively if at least one-half of its 
components function, e.g., by “majority vote.”
For what values of p is a 5-component system more likely to 
operate effectively than a 3-component system?

X5 = # failed in 5-component system ~ Bin(5, p)
X3 = # failed in 3-component system ~ Bin(3, p)

60



X5 = # failed in 5-component system ~ Bin(5, p)
X3 = # failed in 3-component system ~ Bin(3, p)
P(5 component system effective) = P(X5 < 5/2)

P(3 component system effective) = P(X3 < 3/2)

	

 	

 	

 	

 	

 	



Calculation:  
5-component system
is better iff p < 1/2
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disk failures
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noisy channels

Goal: send a 4-bit message over a noisy communication channel.

Say, 1 bit in 10 is flipped in transit, independently.

What is the probability that the message arrives correctly?
Let X = # of errors; X ~ Bin(4, 0.1)
P(correct message received) = P(X=0)

Can we do better?  Yes: error correction via redundancy.

E.g., send every bit in triplicate; use majority vote.  
Let Y = # of errors in one trio;  Y ~ Bin(3, 0.1); P(a trio is OK) = 

If X’ = # errors in triplicate msg, X’ ~ Bin(4, 0.028), and 
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error correcting codes

The Hamming(7,4) code:
Have a 4-bit string to send over the network (or to disk)
Add 3 “parity” bits, and send 7 bits total
If bits are b1b2b3b4 then the three parity bits are 
   parity(b1b2b3), parity(b1b3b4), parity(b2b3b4)
Each bit is independently corrupted (flipped) in transit with 
probability 0.1

Z = number of bits corrupted ~ Bin(7, 0.1)
The Hamming code allow us to correct all 1 bit errors.  

(E.g., if b1 flipped, 1st 2 parity bits, but not 3rd, will look wrong; the 
only single bit error causing this symptom is b1.  Similarly for any other 
single bit being flipped.  Some, but not all, multi-bit errors can be 
detected, but not corrected.)

P(correctable message received) = P(Z ≤ 1)
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Using Hamming error-correcting codes:  Z ~ Bin(7, 0.1)

Recall, uncorrected success rate is

And triplicate code error rate is:

Hamming code is nearly as reliable as the triplicate code, 
with 5/12 ≈ 42% fewer bits.  (& better with longer codes.)

 

error correcting codes
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models & reality

Sending a bit string over the network
n = 4 bits sent, each corrupted with probability 0.1
X = # of corrupted bits, X ~ Bin(4, 0.1)
In real networks, large bit strings (length n ≈ 104)
Corruption probability is very small: p ≈ 10-6

X ~ Bin(104, 10-6) is unwieldy to compute
Extreme n and p values arise in many cases

# bit errors in file written to disk 
# of typos in a book
# of elements in particular bucket of large hash table 
# of server crashes per day in giant data center
# facebook login requests sent to a particular server
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Siméon Poisson, 1781-1840

 

Poisson random variables

Suppose “events” happen, independently, at 
an average rate of λ per unit time.  Let X be 
the actual number of events happening in a 
given time unit.  Then X is a Poisson r.v. with 
parameter λ (denoted X ~ Poi(λ)) and has 
distribution (PMF):

Examples:
# of alpha particles emitted by a lump of radium in 1 sec.
# of traffic accidents in Seattle in one year
# of babies born in a day at UW Med center
# of visitors to my web page today

See B&T Section 6.2 for more on theoretical basis for Poisson.
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X is a Poisson r.v. with parameter λ if it has PMF:

Is it a valid distribution?  Recall Taylor series:

So

 

Poisson random variables
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expected value of  Poisson r.v.s
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j = i-1

(Var[X] = λ, too; proof similar, see B&T example 6.20) 

As expected, given definition 
in terms of “average rate λ”

i = 0 term is zero



 

binomial random variable is Poisson in the limit

Poisson approximates binomial when n is large, p is small, 
and λ = np is “moderate”

Different interpretations of “moderate”
n > 20 and p < 0.05
n > 100 and p < 0.1

Formally, Binomial is Poisson in the limit as 
n → ∞ (equivalently, p → 0) while holding np =  λ
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X ~ Binomial(n,p)

I.e., Binomial ≈ Poisson for large n, small p, moderate i, λ.

 

binomial → Poisson in the limit
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sending data on a network, again

Recall example of sending bit string over a network
Send bit string of length n = 104

Probability of (independent) bit corruption is p = 10-6

X ~ Poi(λ = 104•10-6 = 0.01)
What is probability that message arrives uncorrupted?

Using Y ~ Bin(104, 10-6): 

P(Y=0) ≈ 0.990049829
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binomial vs Poisson
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expectation and variance of  a poisson

Recall:  if  Y ~ Bin(n,p), then:
E[Y] = pn
Var[Y] = np(1-p)

And if X ~ Poi(λ) where λ = np (n →∞, p → 0) then 

  E[X]   = λ  = np = E[Y]

  Var[X] = λ ≈ λ(1-λ/n) = np(1-p) = Var[Y]

Expectation and variance of Poisson are the same (λ)
Expectation is the same as corresponding binomial
Variance almost the same as corresponding binomial
Note: when two different distributions share the same 
mean & variance, it suggests (but doesn’t prove) that 
one may be a good approximation for the other.
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buffers

Suppose a server can process 2 requests per second
Requests arrive at random at an average rate of 1/sec 
Unprocessed requests are held in a buffer 
Q. How big a buffer do we need to avoid ever dropping a 
request?
A. Infinite
Q. How big a buffer do we need to avoid dropping a request 
more often than once a day?
A. (approximate)  If X is the number of arrivals in a second, 
then X is Poisson (λ=1).  We want b s.t. 
P(X > b) <  1/(24*60*60) ≈ 1.2 x 10-5

P(X = b) = e-1/b!      Σi≥8 P(X=i) ≈ P(X=8) ≈ 10-5

Also look at probability of 10 arrivals in 2 seconds, 12 in 3 seconds, etc.
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geometric distribution

In a series X1, X2, ... of Bernoulli trials with success 
probability p, let Y be the index of the first success, i.e.,
     X1 = X2 = ... =  XY-1 = 0 & XY = 1
Then Y is a geometric random variable with parameter p.

Examples:
Number of coin flips until first head
Number of blind guesses on LSAT until I get one right
Number of darts thrown until you hit a bullseye
Number of random probes into hash table until empty slot
Number of wild guesses at a password until you hit it

P(Y=k) = (1-p)k-1p;   Mean 1/p;    Variance (1-p)/p2
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balls in urns – the hypergeometric distribution

Draw d balls (without replacement) from an urn containing 
N, of which w are white, the rest black.  
Let X = number of white balls drawn

(note: n choose k = 0  if k < 0 or k > n)

E[X] = dp,   where p = w/N (the fraction of white balls)
proof: Let Xj be 0/1 indicator for j-th ball is white, X = Σ Xj

The Xj are dependent, but E[X] =  E[Σ Xj] = Σ E[Xj] = dp

Var[X] = dp(1-p)(1-(d-1)/(N-1))
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N

d

B&T, exercise 1.61



 

data mining

N ≈ 22500 human genes, many of unknown function
Suppose in some experiment, d =1588 of them were observed (say, 
they were all switched on in response to some drug)

A big question:  What are they doing?

One idea:  The Gene Ontology Consortium (www.geneontology.org) 
has grouped genes with known functions into categories such as 
“muscle development” or “immune system.”  Suppose 26 of your d 
genes fall in the “muscle development” category.  

Just chance?
Or call Coach & see if he wants to dope some athletes?

Hypergeometric: GO has 116 genes in the muscle development 
category.  If those are the white balls among 22500 in an urn, what is 
the probability that you would see 26 of them in 1588 draws?
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data mining
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A differentially bound peak was associated to the closest gene (unique Entrez ID) measured by distance to TSS 
within CTCF flanking domains. OR: ratio of predicted to observed number of genes within a given GO category. 
Count: number of genes with differentially bound peaks. Size: total number of genes for a given functional 
group. Ont: the Geneontology. BP = biological process, MF = molecular function, CC = cellular component.

Cao, et al., Developmental Cell 18, 662–674, April 20, 2010

probability of seeing this many genes from 
a set of this size by chance according to 

the hypergeometric distribution.  
E.g., if you draw 1588 balls from an urn containing 490 white balls 

and ≈22000 black balls, P(94 white) ≈2.05×10-11



 

joint distributions

Often care about 2 (or more) random variables simultaneously
measured X = height and Y = weight
X = cholesterol and Y = blood pressure
X1, X2, X3 = work loads on servers A, B, C

Joint probability mass function:
fXY(x, y) = P(X = x & Y = y)

Joint cumulative distribution function:
FXY(x, y) = P(X ≤ x & Y ≤ y)

79



 

examples

Two joint PMFs 

P(W = Z) = 3 * 2/24 = 6/24
P(X = Y) = (4 + 3 + 2)/24 = 9/24
Can look at arbitrary relationships between variables this 
way

80

W  Z 1 2 3

1 2/24 2/24 2/24

2 2/24 2/24 2/24

3 2/24 2/24 2/24

4 2/24 2/24 2/24

X    Y 1 2 3

1 4/24 1/24 1/24

2 0 3/24 3/24

3 0 4/24 2/24

4 4/24 0 2/24



 

marginal distributions

Two joint PMFs 

Marginal distribution of one r.v.:    sum over the other:
fY(y) = Σx fXY(x,y)        fX(x) = Σy fXY(x,y)

Question:  Are W & Z independent?  Are X & Y independent?

81

W  Z 1 2 3 fW(w)
1 2/24 2/24 2/24 6/24

2 2/24 2/24 2/24 6/24

3 2/24 2/24 2/24 6/24

4 2/24 2/24 2/24 6/24

fZ(z) 8/24 8/24 8/24

X    Y 1 2 3 fX(x)
1 4/24 1/24 1/24 6/24

2 0 3/24 3/24 6/24

3 0 4/24 2/24 6/24

4 4/24 0 2/24 6/24

fY(y) 8/24 8/24 8/24
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sampling from a (continuous) joint distribution
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expectation of  a function

A function g(X, Y) defines a new random variable.

Its expectation is:

E[g(X, Y)] = ΣxΣy g(x, y) fXY(x,y)

Expectation is linear.  I.e., if g is linear:

E[g(X, Y)] = E[a X + b Y + c] = a E[X] + b E[Y] + c

Example:

g(X, Y) = 2X-Y

E[g(X,Y)] = 72/24 = 3

E[g(X,Y)] = 2•2.5 - 2 = 3

83

X    Y 1 2 3

1 1 • 4/24 0 • 1/24 -1 • 1/24

2 3 • 0/24 2 • 3/24 1 • 3/24

3 5 • 0/24 4 • 4/24 3 • 2/24

4 7 • 4/24 6 • 0/24 5 • 2/24



 

random variables – summary

RV:  a numeric function of the outcome of an experiment

Probability Mass Function p(x): prob that RV = x; Σp(x)=1

Cumulative Distribution Function F(x):  probability that RV ≤ x

Concepts generalize to joint distributions
Expectation: 

of a random variable:  E[X] = Σx xp(x)

of a function:  if Y = g(X), then E[Y] = Σx g(x)p(x)
linearity: 

E[aX + b] = aE[X] + b
E[X+Y] = E[X] + E[Y]; even if dependent
this interchange of  “order of operations” is quite special to linear 
combinations.  E.g. E[XY]≠E[X]*E[Y], in general (but see below)
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random variables – summary

Variance:  
Var[X] = E[ (X-E[X])2 ] = E[X2] - (E[X])2]

Standard deviation: σ = √Var[X]
Var[aX+b] = a2 Var[X]

If X & Y are independent, then 
E[X•Y] = E[X]•E[Y];  
Var[X+Y] = Var[X]+Var[Y] 
(These two equalities hold for indp rv’s; but not in general.)

85



 

random variables – summary

Important Examples:

Bernoulli: P(X=1) = p and P(X=0) = 1-p  	

 μ = p,   σ2= p(1-p)

Binomial:  	

 	

 	

 	

 	

 μ = np, σ2 = np(1-p)

Poisson: 	

 	

 	

 	

 	

 μ = λ,  σ2 = λ

Bin(n,p) ≈ Poi(λ) where λ = np fixed, n →∞ (and so p=λ/n → 0)

Geometric P(X=k) = (1-p)k-1p	

 	

 	

 	

 	

 	

 μ = 1/p, σ2 = (1-p)/p2

Many others, e.g., hypergeometric

86


