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independence

Defn: Two events E and F are independent if
P(EF) = P(E) P(F)

If P(F)>0, this is equivalent to:  P(E|F) = P(E)  (proof below)

Otherwise, they are called dependent
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independence

Roll two dice, yielding values D1 and D2 
1)	
E = { D1 = 1 } 

F = { D2 = 1 } 
P(E) = 1/6,  P(F) = 1/6,  P(EF) = 1/36 
P(EF) = P(E)•P(F) ⇒ E and F independent
Intuitive; the two dice are not physically coupled

2) G = {D1 + D2 = 5} = {(1,4),(2,3),(3,2),(4,1)}
P(E) = 1/6, P(G) = 4/36 = 1/9, P(EG) = 1/36 
not independent! 
E, G are dependent events
The dice are still not physically coupled, but “D1 + D2 = 5” couples 
them mathematically: info about D1 constrains D2.  (But dependence/
independence not always intuitively obvious; “use the definition, Luke”.)
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independence

Two events E and F are independent if
P(EF) = P(E) P(F)
If P(F)>0, this is equivalent to:  P(E|F) = P(E)
Otherwise, they are called dependent

Three events E, F, G are independent if
P(EF)	
= P(E) P(F) 
P(EG)	
= P(E) P(G)      and      P(EFG) = P(E) P(F) P(G)
P(FG)	
= P(F) P(G)

Example:  Let X, Y be each {-1,1} with equal prob
E = {X = 1}, F = {Y = 1}, G = { XY = 1}
P(EF) = P(E)P(F), P(EG) = P(E)P(G), P(FG) = P(F)P(G)
but P(EFG) = 1/4 !!!   (because P(G|EF) = 1)
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independence

In general, events E1, E2, …, En are independent if 
for every subset S of {1,2,…, n}, we have

(Sometimes this property holds only for small 
subsets S.  E.g., E, F, G on the previous slide are 
pairwise independent, but not fully independent.)
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independence

Theorem:  E, F independent ⇒ E, Fc independent

Proof:     P(EFc) = P(E) – P(EF)
                  = P(E) – P(E) P(F)
                  = P(E) (1-P(F))
                  = P(E) P(Fc)

Theorem: if P(E)>0, P(F)>0, then
   E, F independent ⇔ P(E|F)=P(E) ⇔ P(F|E) = P(F)

Proof:  Note P(EF) = P(E|F) P(F), regardless of in/dep.
Assume independent.  Then 

     P(E)P(F) = P(EF) = P(E|F) P(F) ⇒ P(E|F)=P(E) (÷ by P(F))

Conversely, P(E|F)=P(E) ⇒  P(E)P(F) = P(EF)       (× by P(F))
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E = EF ∪ EFc

S

E                          F       



 

biased coin

Suppose a biased coin comes up heads with probability p, 
independent of other flips

 P(n heads in n flips)	
 =  pn

 P(n tails in n flips)	
 =  (1-p)n

 P(exactly k heads in n flips)

Aside: note that the probability of some number of heads =
as it should, by the binomial theorem.                
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Suppose a biased coin comes up heads with 
probability p, independent of other flips

P(exactly k heads in n flips)

Note when p=1/2, this is the same result we would have 
gotten by considering n flips in the “equally likely 
outcomes” scenario.  But p≠1/2 makes that inapplicable.  
Instead, the independence assumption allows us to 
conveniently assign a probability to each of the 2n 
outcomes, e.g.:

Pr(HHTHTTT) = p2(1-p)p(1-p)3 = p#H(1-p)#T

 

biased coin
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hashing

A data structure problem:  fast access to small subset of data 
drawn from a large space.

A solution: hash function h:D→{0,...,n-1} crunches/scrambles 
names from large space into small one.  E.g.,  if x is integer:

h(x) = x mod n  
Good hash functions approximately randomize placement.
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hashing

m strings hashed (uniformly) into a table with n buckets
Each string hashed is an independent trial
E = at least one string hashed to first bucket

What is P(E) ?
Solution:
Fi = string i not hashed into first bucket (i=1,2,…,m)
P(Fi) = 1 – 1/n = (n-1)/n for all i=1,2,…,m
Event (F1 F2 … Fm) = no strings hashed to first bucket
P(E)	
= 1 – P(F1 F2 ⋯ Fm)

  	
 = 1 – P(F1) P(F2) ⋯ P(Fm)
  	
 = 1 – ((n-1)/n)m  
	
 ≈ 1-exp(-m/n) 

indp
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hashing

m strings hashed (non-uniformly) to table w/ n buckets
Each string hashed is an independent trial, with probability 
pi of getting hashed to bucket i
E = At least 1 of buckets 1 to k gets ≥ 1 string 

What is P(E) ?
Solution:
Fi = at least one string hashed into i-th bucket
P(E) = P(F1 ∪ ⋯ ∪ Fk) = 1-P((F

1
 ∪ ⋯ ∪ Fk)c)

       = 1 – P(F1
c F2

c … Fk
c)

       = 1 – P(no strings hashed to buckets 1 to k)
       = 1 – (1-p1-p2-⋯-pk)m
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hashing

Let D0 ⊆ D be a fixed set of m strings, R = {0,...,n-1}.  A hash 
function h:D→R is  perfect for D0 if  h:D0→R is injective (no 
collisions).   How hard is it to find a perfect hash function?
1) Fix h; pick m elements of D0 independently at random ∈ D

Suppose h maps ≈ (1/n)th of D to each element of R.  This  
is like the birthday problem: 

    P(h is perfect for D0) = 
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hashing

Let D0 ⊆ D be a fixed set of m strings, R = {0,...,n-1}.  A hash 
function h:D→R is  perfect for D0 if  h:D0→R is injective (no 
collisions).   How hard is it to find a perfect hash function?
2) Fix D0; pick h at random 

E.g., if m = |D0| = 23 and n = 365, then there is ~50% 
chance that h is perfect for this fixed D0.  If it isn’t, pick h’, 
h’’, etc.  With high probability, you’ll quickly find a perfect 
one!

“Picking a random function h” is easier said than done, but, 
empirically, picking among a set of functions like 

    h(x) = (a•x +b) mod n

where a, b are random 64-bit ints is a start.
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Consider the following parallel network

n routers, ith has probability pi of failing, independently
P(there is functional path) = 1 – P(all routers fail)
                          = 1 – p1p2 ⋯ pn

…

p1

p2

pn

 

network failure
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Contrast: a series network

n routers, ith has probability pi of failing, independently
P(there is functional path) = 
       P(no routers fail) = (1 – p1)(1 – p2) ⋯ (1 – pn)

…

p1

p2

pn

 

network failure
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deeper into independence

Recall:  Two events E and F are independent if
      P(EF) = P(E) P(F)

If E & F are independent, does that tell us anything about
      P(EF|G), P(E|G), P(F|G), 
when G is an arbitrary event?  In particular, is
      P(EF|G) = P(E|G) P(F|G) ?

In general, no.
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deeper into independence

Roll two 6-sided dice, yielding values D1 and D2

E = { D1 = 1 }
F = { D2 = 6 }
G = { D1 + D2 = 7 }

 
E and F are independent

P(E|G) = 1/6
P(F|G) = 1/6, but 
P(EF|G) = 1/6, not 1/36

so E|G and F|G are not independent!
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conditional independence

Two events E and F are called conditionally independent 
given G, if
P(EF|G) = P(E|G) P(F|G)

Or, equivalently (assuming P(F)>0, P(G)>0),
P(E|FG) = P(E|G)
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Say you are in a dorm with 100 students
10 are CS majors: P(C) = 0.1
30 get straight A’s: P(A)  = 0.3
3 are CS majors who get straight A’s
P(CA) = 0.03
P(CA) = P(C) P(A), so C and A independent

At faculty night, only CS majors and A students show up
So 37 students arrive
Of 37 students, 10 are CS ⇒ 

P(C | C or A) = 10/37 = 0.27 < .3 = P(A)
Seems CS major lowers your chance of straight A’s ☹
Weren’t they supposed to be independent?

In fact, CS and A are conditionally dependent at fac night

 

do CSE majors get fewer A’s?
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Randomly choose a day of the week
A	
= { It is not a Monday }
B	
= { It is a Saturday }
C	
= { It is the weekend }

A and B are dependent events
P(A) = 6/7,  P(B) = 1/7,  P(AB) = 1/7.

Now condition both A and B on C:
P(A|C) = 1,  P(B|C) = ½,  P(AB|C) = ½
P(AB|C) = P(A|C) P(B|C) ⇒ A|C and B|C independent

Dependent events can become independent 
by conditioning on additional information!

 

conditioning can also break DEPENDENCE
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Another reason why 
conditioning is so useful



 

independence: summary

Events E & F are independent if 
P(EF) = P(E) P(F), or, equivalently P(E|F) = P(E) (if p(E)>0)

More than 2 events are indp if, for alI subsets, joint probability 
= product of separate event probabilities
Independence can greatly simplify calculations
For fixed G, conditioning on G gives a probability measure, 
P(E|G)
But “conditioning” and “independence” are orthogonal:

Events E & F that are (unconditionally) independent may 
become dependent when conditioned on G
Events that are (unconditionally) dependent may become 
independent when conditioned on G 
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2 Gamblers:  Alice & Bob.  
A has i dollars; B has (N-i)
Flip a coin.  Heads – A wins $1; Tails – B wins $1
Repeat until A or B has all N dollars
What is P(A wins)?

Let Ei = event that A wins starting with $i
Approach: Condition on 1st flip; H = heads

gamblers ruin
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nice example of the utility of 
conditioning: future decomposed 
into two crisp cases instead of 
being a blurred superposition 

thereof 

aka “Drunkard’s Walk”

0            i                          N


