5. independence

Defn:Two events E and F are independent if $P(E F)=P(E) P(F)$

If $P(F)>0$, this is equivalent to: $P(E \mid F)=P(E)$ (proof below)

Otherwise, they are called dependent

Roll two dice, yielding values D_{1} and D_{2}
I) $E=\left\{D_{1}=1\right\}$
$F=\left\{D_{2}=1\right\}$
$P(E)=I / 6, P(F)=I / 6, P(E F)=1 / 36$
$P(E F)=P(E) \cdot P(F) \Rightarrow E$ and F independent
Intuitive; the two dice are not physically coupled
2) $G=\left\{D_{1}+D_{2}=5\right\}=\{(1,4),(2,3),(3,2),(4, I)\}$
$P(E)=I / 6, P(G)=4 / 36=I / 9, P(E G)=I / 36$
not independent!
E, G are dependent events
The dice are still not physically coupled, but " $D_{1}+D_{2}=5$ " couples them mathematically: info about D_{1} constrains D_{2}. (But dependence/ independence not always intuitively obvious;"use the definition, Luke".)

Two events E and F are independent if $P(E F)=P(E) P(F)$ If $P(F)>0$, this is equivalent to: $P(E \mid F)=P(E)$
Otherwise, they are called dependent
Three events E, F, G are independent if $P(E F)=P(E) P(F)$
$P(E G)=P(E) P(G) \quad$ and $\quad P(E F G)=P(E) P(F) P(G)$
$P(F G)=P(F) P(G)$
Example: Let X, Y be each $\{-\mathrm{I}, \mathrm{I}\}$ with equal prob
$E=\{X=I\}, F=\{Y=I\}, G=\{X Y=I\}$
$P(E F)=P(E) P(F), P(E G)=P(E) P(G), P(F G)=P(F) P(G)$ but $P(E F G)=I / 4!!!$ (because $P(G \mid E F)=I)$

In general, events $E_{1}, E_{2}, \ldots, E_{n}$ are independent if for every subset S of $\{1,2, \ldots, n\}$, we have

$$
P\left(\bigcap_{i \in S} E_{i}\right)=\prod_{i \in S} P\left(E_{i}\right)
$$

(Sometimes this property holds only for small subsets S. E.g., E, F, G on the previous slide are pairwise independent, but not fully independent.)

Theorem: E, F independent $\Rightarrow \mathrm{E}, \mathrm{F}^{\mathrm{c}}$ independent
Proof: $\quad P(E F c)=P(E)-P(E F)$

$$
\begin{aligned}
& =P(E)-P(E) P(F) \\
& =P(E)(I-P(F)) \\
& =P(E) P(F c)
\end{aligned}
$$

Theorem: if $P(E)>0, P(F)>0$, then
E, F independent $\Leftrightarrow P(E \mid F)=P(E) \Leftrightarrow P(F \mid E)=P(F)$
Proof: Note $P(E F)=P(E \mid F) P(F)$, regardless of in/dep.
Assume independent. Then

$$
P(E) P(F)=P(E F)=P(E \mid F) P(F) \Rightarrow P(E \mid F)=P(E)(* \text { by } P(F))
$$

Conversely, $P(E \mid F)=P(E) \Rightarrow P(E) P(F)=P(E F) \quad(\times$ by $P(F))$

Suppose a biased coin comes up heads with probability p, independent of other flips
$P(n$ heads in n flips $)$

$$
=p^{n}
$$

P (n tails in n flips)

$$
=(1-p)^{n}
$$

$\mathrm{P}($ exactly k heads in n flips $)=\binom{n}{k} p^{k}(1-p)^{n-k}$

Aside: note that the probability of some number of heads $=\sum_{k}\binom{n}{k} p^{k}(1-p)^{n-k}=(p+(1-p))^{n}=1$ as it should, by the binomial theorem.

Suppose a biased coin comes up heads with probability p, independent of other flips

$$
\mathrm{P}(\text { exactly } \mathrm{k} \text { heads in } \mathrm{n} \text { flips })=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Note when $p=1 / 2$, this is the same result we would have gotten by considering n flips in the "equally likely outcomes" scenario. But $p \neq \mathrm{I} / 2$ makes that inapplicable. Instead, the independence assumption allows us to conveniently assign a probability to each of the 2^{n} outcomes, e.g.:

$$
\operatorname{Pr}(H H T H T T T)=p^{2}(I-p) p(1-p)^{3}=p^{\# H}(I-p)^{\# T}
$$

A data structure problem: fast access to small subset of data drawn from a large space.

A solution: hash function $h: D \rightarrow\{0, \ldots, n-I\}$ crunches/scrambles names from large space into small one. E.g., if x is integer: $h(x)=x \bmod n$
Good hash functions approximately randomize placement.
m strings hashed (uniformly) into a table with n buckets
Each string hashed is an independent trial
$E=$ at least one string hashed to first bucket
What is $P(E)$?
Solution:
$F_{i}=$ string i not hashed into first bucket $(i=1,2, \ldots, m)$
$P\left(F_{i}\right)=I-I / n=(n-I) / n$ for all $i=I, 2, \ldots, m$
Event $\left(F_{1} F_{2} \ldots F_{m}\right)=$ no strings hashed to first bucket

$$
\begin{aligned}
P(E) & =1-P\left(F_{1} F_{2} \cdots F_{m}\right) \\
& =1-P\left(F_{1}\right) P\left(F_{2}\right) \cdots P\left(F_{m}\right) \\
& =1-((n-I) / n)^{m} \\
& \approx 1-\exp (-m / n)
\end{aligned}
$$

m strings hashed (non-uniformly) to table w / n buckets Each string hashed is an independent trial, with probability P_{i} of getting hashed to bucket i
$E=$ At least I of buckets I to k gets $\geq I$ string
What is $P(E)$?
Solution:
$F_{i}=$ at least one string hashed into i-th bucket
$P(E)=P\left(F_{1} \cup \cdots \cup F_{k}\right)=I-P\left(\left(F_{\mathrm{l}} \cup \cdots \cup F_{k}\right)^{c}\right)$
$=1-P\left(F_{1}{ }^{c} F_{2}{ }^{c} \ldots F_{k}{ }^{c}\right)$
$=1-P($ no strings hashed to buckets I to $k)$
$=I-\left(I-P_{1}-P_{2}-\cdots-P_{k}\right)^{m}$

Let $D_{0} \subseteq D$ be a fixed set of m strings, $R=\{0, \ldots, n-I\}$. A hash function $h: D \rightarrow R$ is perfect for D_{0} if $h: D_{0} \rightarrow R$ is injective (no collisions). How hard is it to find a perfect hash function?
I) Fix h; pick m elements of D_{0} independently at random $\in D$ Suppose h maps $\approx(1 / n)^{\text {th }}$ of D to each element of R. This is like the birthday problem:

$$
\mathrm{P}\left(\mathrm{~h} \text { is perfect for } \mathrm{D}_{0}\right)=\frac{n}{n} \frac{n-1}{n} \cdots \frac{n-m+1}{n}
$$

Let $D_{0} \subseteq D$ be a fixed set of m strings, $R=\{0, \ldots, n-I\}$. A hash function $h: D \rightarrow R$ is perfect for D_{0} if $h: D_{0} \rightarrow R$ is injective (no collisions). How hard is it to find a perfect hash function?
2) Fix D_{0}; pick h at random
E.g., if $m=\left|D_{0}\right|=23$ and $n=365$, then there is $\sim 50 \%$ chance that h is perfect for this fixed D_{0}. If it isn't, pick h ', h", etc. With high probability, you'll quickly find a perfect one!
"Picking a random function h " is easier said than done, but, empirically, picking among a set of functions like

$$
h(x)=(a \cdot x+b) \bmod n
$$

where a, b are random 64-bit ints is a start.

Consider the following parallel network

n routers, ith $^{\text {th }}$ has probability P_{i} of failing, independently
$P($ there is functional path $)=I-P($ all routers fail $)$

$$
=I-p_{1} P_{2} \cdots p_{n}
$$

Contrast: a series network

n routers, $\mathrm{i}^{\text {th }}$ has probability P_{i} of failing, independently
$P($ there is functional path $)=$

$$
P(\text { no routers fail })=\left(I-P_{1}\right)\left(I-P_{2}\right) \cdots\left(I-P_{n}\right)
$$

Recall: Two events E and F are independent if

$$
P(E F)=P(E) P(F)
$$

If $E \& F$ are independent, does that tell us anything about $P(E F \mid G), P(E \mid G), P(F \mid G)$,
when G is an arbitrary event? In particular, is $P(E F \mid G)=P(E \mid G) P(F \mid G) ?$

In general, no.

Roll two 6-sided dice, yielding values D_{1} and D_{2}

$$
\begin{aligned}
& E=\left\{D_{1}=1\right\} \\
& F=\left\{D_{2}=6\right\} \\
& G=\left\{D_{1}+D_{2}=7\right\}
\end{aligned}
$$

E and F are independent

$$
\begin{aligned}
& P(E \mid G)=1 / 6 \\
& P(F \mid G)=1 / 6 \text {, but } \\
& P(E F \mid G)=1 / 6 \text {, not } 1 / 36
\end{aligned}
$$

so $\mathrm{E} \mid \mathrm{G}$ and $\mathrm{F} \mid \mathrm{G}$ are not independent!

Two events E and F are called conditionally independent given G, if

$$
P(E F \mid G)=P(E \mid G) P(F \mid G)
$$

Or, equivalently (assuming $P(F)>0, P(G)>0)$,

$$
P(E \mid F G)=P(E \mid G)
$$

Say you are in a dorm with 100 students
10 are $C S$ majors: $P(C)=0.1$
30 get straight A's: $P(A)=0.3$
3 are CS majors who get straight A's
$P(C A)=0.03$
$P(C A)=P(C) P(A)$, so C and A independent
At faculty night, only CS majors and A students show up
So 37 students arrive
Of 37 students, 10 are $\mathrm{CS} \Rightarrow$
$P(C \mid C$ or $A)=10 / 37=0.27<.3=P(A)$
Seems CS major lowers your chance of straight A's :
Weren't they supposed to be independent?
In fact, CS and A are conditionally dependent at fac night

Randomly choose a day of the week $A=\{I t$ is not a Monday $\}$ $B=\{I t$ is a Saturday $\}$
$C=\{I t$ is the weekend $\}$
A and B are dependent events

$$
P(A)=6 / 7, P(B)=1 / 7, P(A B)=1 / 7 .
$$

Now condition both A and B on C :
$P(A \mid C)=I, P(B \mid C)=1 / 2, P(A B \mid C)=1 / 2$
$P(A B \mid C)=P(A \mid C) P(B \mid C) \Rightarrow A \mid C$ and $B \mid C$ independent

Dependent events can become independent by conditioning on additional information!

Events E \& F are independent if

$$
P(E F)=P(E) P(F) \text {, or, equivalently } P(E \mid F)=P(E) \text { (if } p(E)>0)
$$

More than 2 events are indp if, for all subsets, joint probability
$=$ product of separate event probabilities
Independence can greatly simplify calculations
For fixed G, conditioning on G gives a probability measure, P(E|G)
But "conditioning" and "independence" are orthogonal:
Events E \& F that are (unconditionally) independent may become dependent when conditioned on G
Events that are (unconditionally) dependent may become independent when conditioned on G

2 Gamblers: Alice \& Bob.
A has i dollars; B has ($\mathrm{N}-\mathrm{i}$)
Flip a coin. Heads - A wins \$ I;Tails - B wins \$ I Repeat until A or B has all N dollars
What is $\mathrm{P}(\mathrm{A}$ wins)?
Let $\mathrm{E}_{\mathrm{i}}=$ event that A wins starting with $\$ \mathrm{i}$ Approach: Condition on $\left.\right|^{\text {st }}$ flip; $\mathrm{H}=$ heads

aka "Drunkard's Walk"
nice example of the utility of conditioning: future decomposed into two crisp cases instead of being a blurred superposition thereof

$$
\left.\begin{array}{rl}
p_{i} & =P\left(E_{i}\right)=P\left(E_{i} \mid H\right) P(H)+P\left(E_{i} \mid T\right) P(T) \\
p_{i} & =\frac{1}{2}\left(p_{i+1}+p_{i-1}\right) \\
2 p_{i} & =p_{i+1}+p_{i-1} \\
p_{i+1}-p_{i} & =p_{i}-p_{i-1} \\
p_{2}-p_{1} & =p_{1}-p_{0}=p_{1}, \text { since } p_{0}=0
\end{array} \quad \int \begin{array}{rl}
\text { So: } p_{2} & =2 p_{1} \\
& \cdots
\end{array}\right\} \begin{aligned}
p_{i} & =i p_{1} \\
p_{N} & =N p_{1}=1 \\
p_{i} & =i / N
\end{aligned}
$$

