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conditional probability

Conditional probability of E given F:  probability that E occurs given 
that F has occurred.

 “Conditioning on F”
 Written as P(E|F)
 Means “P(E, given F observed)”

Sample space S reduced to those 
elements consistent with F (i.e. S ∩ F)

Event space E reduced to those 
elements consistent with F (i.e. E ∩ F)

 With equally likely outcomes,
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coin flipping

 Suppose you flip two coins & all outcomes are equally likely.
 What is the probability that both flips land on heads if…
 • The first flip lands on heads?

 Let B = {HH} and F = {HH, HT}
 P(B|F) = P(BF)/P(F) = P({HH})/P({HH, HT})
         = (1/4)/(2/4) = 1/2

  • At least one of the two flips lands on heads?
 Let A = {HH,  HT,  TH}, BA = {HH}
 P(B|A) = |BA|/|A| = 1/3

 • At least one of the two flips lands on tails?
 Let G = {TH,  HT,  TT}
 P(B|G) = P(BG)/P(G) = P(∅)/P(G) = 0/P(G) = 0
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conditional probability

General defn:                                    where P(F) > 0

Holds even when outcomes are not equally likely.

What if P(F) = 0?
P(E|F) undefined: (you can’t observe the impossible)

Implies:  P(EF) = P(E|F) P(F)       (“the chain rule”)

General definition of Chain Rule:
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conditional probability

General defn:                                    where P(F) > 0

Holds even when outcomes are not equally likely.

“P( - | F )” is a probability law, i.e. satisfies the 3 axioms

Proof:
the idea is simple–the sample space contracts to F; dividing all 
(unconditional) probabilities by P(F) correspondingly re-
normalizes the probability measure – see text for details; better 
yet, try it!

Ex: P(A∪B)    ≤ P(A)   + P(B)
∴   P(A∪B|F) ≤ P(A|F) + P(B|F)
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sending bit strings
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sending bit strings

Bit string with m 0’s and n 1’s sent on the network
All distinct arrangements of bits equally likely
E = first bit received is a 1
F = k of first r bits received are 1’s

What’s P(E|F)?
Solution 1:
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sending bit strings

Bit string with m 0’s and n 1’s sent on the network
All distinct arrangements of bits equally likely
E = first bit received is a 1
F = k of first r bits received are 1’s

What’s P(E|F)?
Solution 2:

Observe:
  P(E|F) = P(picking one of k 1’s out of r bits)
So:
  P(E|F) = k/r
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piling cards
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piling cards

Deck of 52 cards randomly divided into 4 piles
13 cards per pile
Compute P(each pile contains an ace)

Solution:
E1 = {      in any one pile }

E2 = {       &       in different piles } 

E3 = {                    in different piles }

E4 = { all four aces in different piles }

Compute P(E1 E2 E3 E4)
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piling cards

E1 = {      in any one pile }

E2 = {       &       in different piles } 

E3 = {                    in different piles }

E4 = { all four aces in different piles }

P(E1E2E3E4)
= P(E1) P(E2|E1) P(E3|E1E2) P(E4|E1E2E3)
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E1 = {      in any one pile }

E2 = {       &       in different piles } 

E3 = {                    in different piles }

E4 = { all four aces in different piles }
P(E1E2E3E4)	
= P(E1) P(E2|E1) P(E3|E1E2) P(E4|E1E2E3)
P(E1)      	
 = 1
P(E2|E1) 	
 = 39/51 (39 of 51 slots not in AH pile)

P(E3|E1E2 )	
 = 26/50 (26 not in AS, AH piles)

P(E4|E1E2E3)	
= 13/49 (13 not in AS, AH, AD piles)

piling cards
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A conceptual trick: what’s 
randomized?
a)	
 randomize cards, deal 

sequentially into piles
b)	
 sort cards, aces first, deal 

randomly into piles.



piling cards

E1 = {      in any one pile }

E2 = {       &       in different piles } 

E3 = {                    in different piles }

E4 = { all four aces in different piles }

P(E1E2E3E4)
= P(E1) P(E2|E1) P(E3|E1E2) P(E4|E1E2E3)
= (39•26•13)/(51•50•49)
≈ 0.105
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law of  total probability

E and F are events in the sample space S

E = EF ∪ EFc

EF ∩ EFc = ∅ 

⇒ P(E) = P(EF) + P(EFc)

S

E                          F       
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law of  total probability

 P(E) = P(EF) + P(EFc)
         = P(E|F) P(F) + P(E|Fc) P(Fc)
         = P(E|F) P(F) + P(E|Fc) (1-P(F))

More generally, if F1, F2, ..., Fn partition S (mutually 

exclusive, ∪i Fi = S, P(Fi)>0), then

P(E) = ∑i P(E|Fi) P(Fi)

weighted average, 
conditioned on event 
F happening or not.
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weighted average, 
conditioned on events 
Fi happening or not.



Bayes Theorem
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Rev. Thomas Bayes c. 1701-1761

Probability of 
drawing 3 red balls, 

given 3 in urn ?

Probability of 3 red 
balls in urn, given 
that I drew three?

w = ??
r = ??

w = 3
r = 3



When Microsoft Senior Vice President 
Steve Ballmer [now CEO] first heard his company was
                                planning a huge investment in an
                                Internet service offering… he went 
                                to Chairman Bill Gates with his
                                concerns…

Bayes Theorem

Improbable Inspiration:  The future 
of software may lie in the obscure 
theories of an 18th century cleric 
named Thomas Bayes
Los Angeles Times (October 28, 1996)
By Leslie Helm, Times Staff Writer  

Gates began discussing the critical role 
of “Bayesian” systems…

source: http://www.ar-tiste.com/latimes_oct-96.html



Most common form:

 

Expanded form (using law of total probability):

Proof:

Bayes Theorem
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Most common form:

 

Expanded form (using law of total probability):

Bayes Theorem

Why it’s important:
Reverse conditioning
P(model|data) ~ P(data|model)
Combine new evidence (E) with prior belief (P(F))
Posterior vs prior
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w = ??
r = ??

An urn contains 6 balls, either 3 red + 3 white or all 6 red.  
You draw 3; all are red.
Did urn have only 3 red?

Can’t tell

Suppose it was 3 + 3 with probability p=3/4.
Did urn have only 3 red?

M = urn has 3 red + 3 white
D = I drew 3 red

P(M | D) = P(D | M)P(M)/[P(D | M)P(M)+ P(D | Mc)P(Mc)]
  P(D | M) = (3 choose 3)/(6 choose 3) = 1/20
  P(M | D) = (1/20)(3/4)/[(1/20)(3/4) + (1)(1/4)] = 3/23

prior = 3/4 ;  posterior = 3/23

Bayes Theorem



simple spam detection

Say that 60% of email is spam
90% of spam has a forged header
20% of non-spam has a forged header
Let F = message contains a forged header
Let J = message is spam

What is P(J|F) ?

Solution:
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simple spam detection

Say that 60% of email is spam
10% of spam has the word “Viagra”
1% of non-spam has the word “Viagra”
Let V = message contains the word “Viagra”
Let J = message is spam

What is P(J|V) ?

Solution:
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Child is born with (A,a) gene pair (event BA,a)
 Mother has (A,A) gene pair
 Two possible fathers:  M1 = (a,a),  M2 = (a,A)
 P(M1) = p,  P(M2) = 1-p

What is P(M1 | BA,a) ?

Solution:

i.e., data about child raises probability that M1 is father

DNA paternity testing
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HIV testing

Suppose an HIV test is 98% effective in detecting HIV, i.e., its 
“false negative” rate = 2%.  Suppose furthermore, the test’s 
“false positive” rate = 1%.

0.5% of population has HIV
Let E = you test positive for HIV
Let F = you actually have HIV

What is P(F|E) ?
Solution:
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why it’s still good to get tested

 Let Ec = you test negative for HIV
 Let F = you actually have HIV
 What is P(F|Ec) ?

HIV+ HIV-

Test + 0.98 = P(E|F) 0.01 = P(E|Fc)

Test - 0.02 = P(Ec|F) 0.99 = P(Ec|Fc)
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odds

The odds of event E is P(E)/(P(Ec)

Example:  A = any of 2 coin flips is H:

P(A) = 3/4, P(Ac) = 1/4, so odds of A is 3 
(or “3 to 1 in favor”)

Example:  odds of having HIV:  

P(F) = .5% so P(F)/P(Fc) =  .005/.995 
(or 1 to 199 against)
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posterior odds from prior odds

F = some event of interest (say,  “HIV+”)

E = additional evidence (say, “HIV test was positive”)

Prior odds of F:  P(F)/P(Fc)

What are the Posterior odds of F:  P(F|E)/P(Fc|E) ?
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Let E = you test positive for HIV
Let F = you actually have HIV
What are the posterior odds?

More likely to test positive if you are positive, so Bayes factor >1; 
positive test increases odds 98-fold, to 2.03:1 against (vs prior of 
199:1 against)

posterior odds from prior odds
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Let E = you test negative for HIV
Let F = you actually have HIV
What is the ratio between P(F|E) and P(Fc|E) ?

Unlikely to test negative if you are positive, so Bayes factor <1; 
negative test decreases odds 49.5-fold, to 9850:1 against (vs prior 
of 199:1 against)

posterior odds from prior odds
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simple spam detection

Say that 60% of email is spam
10% of spam has the word “Viagra”
1% of non-spam has the word “Viagra”
Let V = message contains the word “Viagra”
Let J = message is spam

What are posterior odds that a 
message containing “Viagra” is spam ?

Solution:
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