4. Conditional Probability

CSE 312
Autumn 2011

W.L. Ruzzo

conditional probability

Conditional probability of E given F: probability that E occurs given that F has occurred.
"Conditioning on F"
Written as $\mathrm{P}(\mathrm{E} \mid \mathrm{F})$
Means "P(E, given F observed)"
Sample space S reduced to those
elements consistent with F (i.e. $\mathrm{S} \cap F$)
Event space E reduced to those elements consistent with F (i.e. $E \cap F$) With equally likely outcomes,

$$
\begin{aligned}
& P(E \mid F)=\frac{\# \text { of outcomes in } E \text { consistent with } F}{\# \text { of outcomes in } S \text { consistent with } F}=\frac{|E F|}{|S F|}=\frac{|E F|}{|F|} \\
& P(E \mid F)=\frac{|E F|}{|F|}=\frac{|E F| /|S|}{|F| /|S|}=\frac{P(E F)}{P(F)}
\end{aligned}
$$

coin flipping

Suppose you flip two coins \& all outcomes are equally likely.
What is the probability that both flips land on heads if...

- The first flip lands on heads?

$$
\begin{aligned}
& \text { Let } B=\{H H\} \text { and } F=\{H H, H T\} \\
& \begin{aligned}
P(B \mid F) & =P(B F) / P(F)=P(\{H H\}) / P(\{H H, H T\}) \\
& =(1 / 4) /(2 / 4)=1 / 2
\end{aligned}
\end{aligned}
$$

- At least one of the two flips lands on heads?

$$
\begin{aligned}
& \text { Let } A=\{H H, H T, T H\}, B A=\{H H\} \\
& P(B \mid A)=|B A| /|A|=I / 3
\end{aligned}
$$

- At least one of the two flips lands on tails?

$$
\begin{aligned}
& \text { Let } G=\{\mathrm{TH}, \mathrm{HT}, \mathrm{TT}\} \\
& \mathrm{P}(\mathrm{~B} \mid \mathrm{G})=\mathrm{P}(\mathrm{BG}) / \mathrm{P}(\mathrm{G})=\mathrm{P}(\varnothing) / \mathrm{P}(\mathrm{G})=0 / \mathrm{P}(\mathrm{G})=0
\end{aligned}
$$

conditional probability

General defn: $P(E \mid F)=\frac{P(E F)}{P(F)}$ where $\mathrm{P}(\mathrm{F})>0$
Holds even when outcomes are not equally likely.
What if $P(F)=0$?
$P(E \mid F)$ undefined: (you can't observe the impossible)
Implies: $P(E F)=P(E \mid F) P(F) \quad$ ("the chain rule")
General definition of Chain Rule:

$$
\begin{aligned}
& P\left(E_{1} E_{2} \cdots E_{n}\right)= \\
& \quad P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right) P\left(E_{3} \mid E_{1}, E_{2}\right) \cdots P\left(E_{n} \mid E_{1}, E_{2}, \ldots, E_{n-1}\right)
\end{aligned}
$$

conditional probability

General defn: $P(E \mid F)=\frac{P(E F)}{P(F)}$ where $\mathrm{P}(\mathrm{F})>0$
Holds even when outcomes are not equally likely.
" $P(-\mid F)$ " is a probability law, i.e. satisfies the 3 axioms

Proof:
the idea is simple-the sample space contracts to F; dividing all (unconditional) probabilities by $\mathrm{P}(\mathrm{F})$ correspondingly renormalizes the probability measure - see text for details; better yet, try it!
$E x: P(A \cup B) \leq P(A)+P(B)$
$\therefore P(A \cup B \mid F) \leq P(A \mid F)+P(B \mid F)$

Bit string with m 0's and n I's sent on the network
All distinct arrangements of bits equally likely
$E=$ first bit received is a I
$\mathrm{F}=\mathrm{k}$ of first r bits received are I's
What's $P(E \mid F)$?
Solution I:

$$
\begin{aligned}
& P(E)=\frac{n}{m+n} \quad P(F)=\frac{\binom{n}{k}\binom{m}{r-k}}{\binom{m+n}{r}} \\
& P(F \mid E)=\frac{\binom{n-1}{k-1}\binom{m}{r-k}}{\binom{m+n-1}{r-1}} \\
& P(E \mid F)=\frac{P(E F)}{P(F)}=\frac{P(F \mid E) P(E)}{P(F)}=\frac{k}{r}
\end{aligned}
$$

Bit string with m 0's and n I's sent on the network
All distinct arrangements of bits equally likely
$E=$ first bit received is a I
$F=k$ of first r bits received are l's
What's $P(E \mid F)$?
Solution 2:
Observe:

$P(E \mid F)=P($ picking one of k l's out of r bits $)$
So:
$P(E \mid F)=k / r$

piling cards

Deck of 52 cards randomly divided into 4 piles 13 cards per pile
Compute P (each pile contains an ace)
Solution:

$$
\begin{aligned}
& \mathrm{E}_{1}=\{\text { in any one pile }\} \\
& \mathrm{E}_{2}=\{\& \& \text { in different piles }\} \\
& \mathrm{E}_{3}=\{\text { in different piles }\}
\end{aligned}
$$

$$
E_{4}=\{\text { all four aces in different piles }\}
$$

Compute $\mathrm{P}\left(\mathrm{E}_{1} \mathrm{E}_{2} \mathrm{E}_{3} \mathrm{E}_{4}\right)$

```
E
E
E
E
P(E, E E E E E E 4 )
=P(E)}P(\mp@subsup{E}{2}{}|\mp@subsup{E}{1}{})P(\mp@subsup{E}{3}{}|\mp@subsup{E}{1}{}\mp@subsup{E}{2}{})P(\mp@subsup{E}{4}{}|\mp@subsup{E}{1}{}\mp@subsup{E}{2}{}\mp@subsup{E}{3}{}
```


piling cards


```
E
E}={\mp@code{* & & in different piles }
E
E
P(E}\mp@subsup{E}{1}{}\mp@subsup{\textrm{E}}{2}{}\mp@subsup{\textrm{E}}{3}{}\mp@subsup{\textrm{E}}{4}{}
```



```
    = (39.26-13)/(5|\cdot50•49)
    \approx0.105
```


law of total probability

E and F are events in the sample space S

$$
E=E F \cup E F c
$$

$$
\begin{gathered}
E F \cap E F c=\varnothing \\
\Rightarrow P(E)=P(E F)+P(E F c)
\end{gathered}
$$

$$
\begin{aligned}
P(E)= & P(E F)+P\left(E F^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right) \\
& =P(E \mid F) P(F)+P\left(E \mid F^{c}\right)(1-P(F))
\end{aligned}
$$

weighted average, conditioned on event
F happening or not.

More generally, if $F_{1}, F_{2}, \ldots, F_{n}$ partition S (mutually
exclusive, $\left.\bigcup_{i} F_{i}=S, P\left(F_{i}\right)>0\right)$, then

$$
P(E)=\sum_{i} P\left(E \mid F_{i}\right) P\left(F_{i}\right)
$$

weighted average, conditioned on events
F_{i} happening or not.

Bayes Theorem

Rev.Thomas Bayes c. I701-I76I

Probability of 3 red balls in urn, given that I drew three?

Bayes Theorem

Improbable Inspiration: The future of software may lie in the obscure theories of an $18^{\text {th }}$ century cleric named Thomas Bayes
Los Angeles Times (October 28, 1996)
By Leslie Helm,Times Staff Writer
When Microsoft Senior Vice President

Steve Ballmer [now CEO] first heard his company was
 planning a huge investment in an Internet service offering... he went to Chairman Bill Gates with his concerns...

Gates began discussing the critical role of "Bayesian" systems...
source: http://www.ar-tiste.com/latimes oct-96.html

Bayes Theorem

Most common form:

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E)}
$$

Expanded form (using law of total probability):

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)}
$$

Proof:

$$
P(F \mid E)=\frac{P(E F)}{P(E)}=\frac{P(E \mid F) P(F)}{P(E)}
$$

Bayes Theorem

Most common form:

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E)}
$$

Expanded form (using law of total probability):

$$
P(F \mid E)=\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)}
$$

Why it's important:
Reverse conditioning
P(model|data) ~ P(data|model)
Combine new evidence (E) with prior belief $(P(F))$
Posterior vs prior

Bayes Theorem

An urn contains 6 balls, either 3 red +3 white or all 6 red. You draw 3; all are red.
Did urn have only 3 red?
Can't tell
Suppose it was $3+3$ with probability p=3/4.
Did urn have only 3 red?

$$
\begin{aligned}
& M=\text { urn has } 3 \text { red }+3 \text { white } \\
& D=1 \text { drew } 3 \text { red }
\end{aligned}
$$

$$
\begin{aligned}
& P(M \mid D)=P(D \mid M) P(M) /\left[P(D \mid M) P(M)+P\left(D \mid M^{c}\right) P\left(M^{c}\right)\right] \\
& P(D \mid M)=(3 \text { choose } 3) /(6 \text { choose } 3)=I / 20 \\
& P(M \mid D)=(I / 20)(3 / 4) /[(1 / 20)(3 / 4)+(I)(I / 4)]=3 / 23 \\
& \text { prior }=3 / 4 ; \text { posterior }=3 / 23
\end{aligned}
$$

simple spam detection

Say that 60% of email is spam 90% of spam has a forged header 20% of non-spam has a forged header
Let $F=$ message contains a forged header Let $J=$ message is spam
What is $P(J \mid F)$?
Solution:

$$
\begin{aligned}
P(J \mid F) & =\frac{P(F \mid J) P(J)}{P(F \mid J) P(J)+P\left(F \mid J^{c}\right) P\left(J^{c}\right)} \\
& =\frac{(0.9)(0.6)}{(0.9)(0.6)+(0.2)(0.4)} \\
& \approx 0.871
\end{aligned}
$$

simple spam detection

Say that 60% of email is spam
10\% of spam has the word "Viagra"
I\% of non-spam has the word "Viagra"
Let $V=$ message contains the word "Viagra"
Let $J=$ message is spam
What is $P(J \mid V)$?
Solution:

$$
\begin{aligned}
P(J \mid V) & =\frac{P(V \mid J) P(J)}{P(V \mid J) P(J)+P\left(V \mid J^{c}\right) P\left(J^{c}\right)} \\
& =\frac{(0.1)(0.6)}{(0.1)(0.6)+(0.01)(1-0.6)} \\
& \approx 0.896
\end{aligned}
$$

DNA paternity testing

Child is born with (A, a) gene pair (event $B_{A, a}$)
Mother has (A, A) gene pair
Two possible fathers: $M_{1}=(a, a), M_{2}=(a, A)$

$$
P\left(M_{1}\right)=p, P\left(M_{2}\right)=1-p
$$

What is $P\left(M_{1} \mid B_{A, 2}\right)$?
Solution:

$$
\begin{aligned}
& P\left(M_{1} \mid B_{A a}\right) \\
& \quad=\frac{P\left(B_{A a} \mid M_{1}\right) P\left(M_{1}\right)}{P\left(B_{A a} \mid M_{1}\right) P\left(M_{1}\right)+P\left(B_{A a} \mid M_{2}\right) P\left(M_{2}\right)} \\
& \quad=\frac{1 \cdot p}{1 \cdot p+0.5(1-p)}=\frac{2 p}{1+p}>\frac{2 p}{1+1}=p
\end{aligned}
$$

i.e., data about child raises probability that M_{1} is father

HIV testing

Suppose an HIV test is 98% effective in detecting HIV, i.e., its "false negative" rate $=2 \%$. Suppose furthermore, the test's
"false positive" rate $=1 \%$.
0.5\% of population has HIV

Let $\mathrm{E}=$ you test positive for HIV
Let $\mathrm{F}=$ you actually have HIV
What is $\mathrm{P}(\mathrm{F} \mid \mathrm{E})$?
Solution:

$$
\begin{aligned}
P(F \mid E) & =\frac{P(E \mid F) P(F)}{P(E \mid F) P(F)+P\left(E \mid F^{c}\right) P\left(F^{c}\right)} \\
& =\frac{(0.98)(0.005)}{(0.98)(0.005)+(0.01)(1-0.005)} \\
& \approx 0.330
\end{aligned}
$$

$$
\begin{array}{l|c|c}
& \text { HIV }+ & \text { HIV- } \\
\hline \text { Test }+ & 0.98=P(E \mid F) & 0.01=P\left(E \mid F^{c}\right) \\
\hline \text { Test }- & 0.02=P\left(E^{c} \mid F\right) & 0.99=P\left(E^{c} \mid F^{c}\right) \\
\hline
\end{array}
$$

Let $E^{C}=$ you test negative for HIV
Let $\mathrm{F}=$ you actually have HIV
What is $P\left(F \mid E^{C}\right)$?

$$
\begin{aligned}
P\left(F \mid E^{c}\right) & =\frac{P\left(E^{c} \mid F\right) P(F)}{P\left(E^{c} \mid F\right) P(F)+P\left(E^{c} \mid F^{c}\right) P\left(F^{c}\right)} \\
& =\frac{(0.02)(0.005)}{(0.02)(0.005)+(0.99)(1-0.005)} \\
& \approx 0.0001
\end{aligned}
$$

The odds of event E is $\mathrm{P}(\mathrm{E}) /\left(\mathrm{P}\left(\mathrm{E}^{c}\right)\right.$

Example: $\mathrm{A}=$ any of 2 coin flips is H :
$P(A)=3 / 4, P\left(A^{c}\right)=1 / 4$, so odds of A is 3
(or"3 to I in favor")

Example: odds of having HIV:

$$
\begin{aligned}
& P(F)=.5 \% \text { so } P(F) / P\left(F^{c}\right)=.005 / .995 \\
& \text { (or I to } 199 \text { against) }
\end{aligned}
$$

posterior odds from prior odds

F = some event of interest (say, "HIV+")
$\mathrm{E}=$ additional evidence (say,"HIV test was positive")
Prior odds of F: P(F)/P(Fc)
What are the Posterior odds of $\mathrm{F}: \mathrm{P}(\mathrm{F} \mid \mathrm{E}) / \mathrm{P}\left(\mathrm{F}^{\mathrm{C}} \mid \mathrm{E}\right)$?

$$
\begin{aligned}
P(F \mid E) & =\frac{P(E \mid F) P(F)}{P(E)} \\
P\left(F^{c} \mid E\right) & =\frac{P\left(E \mid F^{c}\right) P\left(F^{c}\right)}{P(E)} \\
\frac{P(F \mid E)}{P\left(F^{c} \mid E\right)} & =\frac{P(E \mid F)}{P\left(E \mid F^{c}\right)} \cdot \frac{P(F)}{P\left(F^{c}\right)} \\
\binom{\text { posterior }}{\text { odds }} & =\binom{\text { "Bayes }}{\text { factor" }} \cdot\binom{\text { prior }}{\text { odds }}
\end{aligned}
$$

Let $\mathrm{E}=$ you test positive for HIV
Let $F=$ you actually have HIV
What are the posterior odds?

$$
\frac{P(F \mid E)}{P\left(F^{c} \mid E\right)}=\frac{P(E \mid F)}{P\left(E \mid F^{c}\right)} \frac{P(F)}{P\left(F^{c}\right)}
$$

(posterior odds $=$ "Bayes factor" . prior odds)

$$
=\frac{0.98}{0.01} \cdot \frac{0.005}{0.995}
$$

More likely to test positive if you are positive, so Bayes factor > I; positive test increases odds 98 -fold, to 2.03:I against (vs prior of 199: I against)

Let $\mathrm{E}=$ you test negative for HIV
Let $F=$ you actually have HIV
What is the ratio between $\mathrm{P}(\mathrm{F} \mid \mathrm{E})$ and $\mathrm{P}\left(\mathrm{F}^{\mathrm{c}} \mid \mathrm{E}\right)$?

$$
\frac{P(F \mid E)}{P\left(F^{c} \mid E\right)}=\frac{P(E \mid F)}{P\left(E \mid F^{c}\right)} \frac{P(F)}{P\left(F^{c}\right)}
$$

(posterior odds $=$ "Bayes factor" \cdot prior odds)

$$
=\frac{0.02}{0.99} \cdot \frac{0.005}{0.995}
$$

Unlikely to test negative if you are positive, so Bayes factor < ; negative test decreases odds 49.5-fold, to 9850:I against (vs prior of I99: I against)

simple spam detection

Say that 60% of email is spam
10\% of spam has the word "Viagra"
I\% of non-spam has the word "Viagra"
Let $V=$ message contains the word "Viagra"
Let $J=$ message is spam
What are posterior odds that a
message containing "Viagra" is spam ?
Solution:

$$
\frac{P(J \mid V)}{P\left(J^{c} \mid V\right)}=\frac{P(V \mid J)}{P\left(V \mid J^{c}\right)} \frac{P(J)}{P\left(J^{c}\right)}
$$

(posterior odds $=$ "Bayes factor". prior odds)

$$
15=\frac{0.10}{0.01} \cdot \frac{0.6}{0.4}
$$

