# CSE 312 Foundations II 

## 2. Counting

Autumn 2011

W.L. Ruzzo

How many ways are there to do $X$ ?
E.g., $X=$ "choose an integer $I, 2, \ldots, I 0 "$
E.g., $X=$ "Walk from Ist \& Marion to 5th \& Pine, going only North or East at each intersection."


## The Point:

Counting gets hard when numbers are large, implicit and/or constraints are complex. Systematic approaches help.

If there are
n outcomes for some event $A$, sequentially followed by $m$ outcomes for event $B$, then there are $n \bullet m$ outcomes overall.

aka "The Product Rule"
Easily generalized to more events
Q. How many n-bit numbers are there?

Q. How many subsets of a set of size n are there?
A. $I^{\text {st }}$ member in or out; $2^{\text {nd }}$ member in or out,... $\Rightarrow 2^{\text {n }}$
Q. How many 4-character passwords are there, if each character must be one of $\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}, \mathrm{0}, \mathrm{I}, \ldots, 9$ ?
A. $36 \cdot 36 \cdot 36 \cdot 36=1,679,6 \mathrm{I} 6 \approx \mathrm{I} .7$ million
Q. Ditto, but no character may be repeated?
A. $36 \cdot 35 \cdot 34 \cdot 33=\mathrm{I}, 4 \mathrm{I} 3,720 \approx \mathrm{I} .4$ million
(And a non-mathematical question: why do security experts generally prefer schemes such as the second, even though it offers fewer choices?)

How many arrangements of
I, 2, 3 are possible (each used once, no repeat, order matters)?

| 1 | 2 | 3 | 2 | 1 | 3 | 3 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 3 | 2 | 2 | 3 | 1 | 3 | 2 |$|$

More generally: How many arrangements of $n$ distinct items are possible?

| n | choices for Ist |
| :---: | :--- |
| $(\mathrm{n}-\mathrm{I})$ | choices for 2nd |
| $(\mathrm{n}-2)$ | choices for 3rd |
| $\ldots$ | $\ldots$ |
| I | choices for last |

$$
\mathrm{n} \cdot(\mathrm{n}-\mathrm{I}) \cdot(\mathrm{n}-\mathrm{I}) \cdot \ldots \cdot \mathrm{I}=\mathrm{n}!\quad(\mathrm{n} \text { factorial })
$$

Q. How many permutations of DOGIE are there?
A. $5!=120$
Q. How many of DOGGY ?
A. $5!/ 2!=60$
$D_{O G} G_{2} Y=D O G_{2} G_{Y} Y$
$\mathrm{ODG}_{1} \mathrm{YG}_{2}=\mathrm{ODG}_{2} \mathrm{YG} \mathrm{I}_{1}$
Q. How many of GODOGGY ?
A. $\frac{7!}{3!2!1!1!}=420$
Q. Your elf-lord avatar can carry 3 objects chosen from
I. sword
2. knife
3. staff
4. water jug
5. iPad w/magic WiFi

How many ways can you equip him/her?
A. $\frac{5 \cdot 4 \cdot 3}{3!}=\frac{5!}{3!\cdot 2!}=10$

Combinations: number ways to choose r things from n "n choose r" $\binom{n}{r}=\frac{n!}{r!(n-r)!}$ aka binomial coefficients

## Important special case:

how many (unordered) pairs from n objects

$$
\binom{n}{2}=\frac{n(n-1)}{2}=\Theta\left(n^{2}\right)
$$

Many Identities. E.g.:

$$
\begin{array}{ll}
\binom{n}{r}=\binom{n}{n-r} & \leftarrow \text { by symmetry of definition } \\
\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r} & \leftarrow \text { Ist object either in or out } \\
\binom{n}{r}=\frac{n}{r}\binom{n-1}{r-1} & \leftarrow \text { by definition }+ \text { algebra }
\end{array}
$$

$$
(x+y)^{n}=\sum_{k}\binom{n}{k} x^{k} y^{n-k}
$$

proof I: induction ...
proof 2: counting -

$$
(x+y) \cdot(x+y) \cdot(x+y) \cdot \ldots \cdot(x+y)
$$

pick either $x$ or $y$ from ${ }^{\text {st }}$ binomial factor pick either $x$ or $y$ from $2^{\text {nd }}$ binomial factor
pick either $x$ or $y$ from $n^{\text {th }}$ binomial factor

How many ways did you get exactly k x's? $\quad\binom{n}{k}$

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

## Proof:

$$
\sum_{k=0}^{n}\binom{n}{k}=\sum_{k=0}^{n}\binom{n}{k} 1^{k} 1^{n-k}=(1+1)^{n}=2^{n}
$$

Q. How many ways are there to walk from ${ }^{\text {st }} \&$ Marion to $5^{\text {th }} \&$ Pine, going only North or East?


A: 7 choose $3=35$ :
Changing the visualization often helps. Instead of tracing paths on the grid above, list choices.

NNNEEEE NNENEEE NNEENEE You walk 7 blocks; at each intersection choose N or E ; must choose N exactly 3 times.

$|A \cup B|=$
$|A|+|B|-|A \cap B|$

$|A \cup B \cup C|=$
$|A|+|B|+|C|$ $-\left|A_{\cap} B\right|-\left|A_{n} C\right|-\left|B_{n} C\right|$ $+\left|A_{n} B \cap C\right|$

General: + singles - pairs + triples - quads + ...
pigeonhole principle


If there are $n$ pigeons in $k$ holes and $n>k$, then some hole contains more than one pigeon.
More precisely, some hole contains at least $\lceil\mathrm{n} / \mathrm{k}\rceil$ pigeons.

There are two people in London who have the same number of hairs on their head.
Typical head ~ I50,000 hairs
Let's say max-hairy-head ~ 1,000,000 hairs
Since there are more than $1,000,000$ people in London...


