Section 05: Number Theory

1. GCD

(a) Calculate $\operatorname{gcd}(100,50)$.
(b) Calculate $\operatorname{gcd}(17,31)$.
(c) Find the multiplicative inverse of $6(\bmod 7)$.
(d) Does 49 have an multiplicative inverse $(\bmod 7)$?

2. Extended Euclidean Algorithm

(a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.
(b) Now, solve $7 z \equiv 2(\bmod 33)$ for all of its integer solutions z.

3. Euclid's Lemma ${ }^{1}$

(a) Show that if an integer p divides the product of two integers a and b, and $\operatorname{gcd}(p, a)=1$, then p divides b.
(b) Show that if a prime p divides $a b$ where a and b are integers, then $p \mid a$ or $p \mid b$. (Hint: Use part (a))

[^0]
[^0]: ${ }^{1}$ these proofs aren't much longer than proofs you've seen so far, but it can be a little easier to get stuck - use these as a chance to practice how to get unstuck if you do!

