
Relations,Graphs
Midterm Misconceptions

Properties of relations
What do we do with relations? Usually we prove properties about them.

Symmetry
A binary relation 𝑅 on a set 𝑺 is “symmetric” iff

for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 → 𝐛, 𝐚 ∈ 𝑹]

Transitivity
A binary relation 𝑅 on a set 𝑺 is “transitive” iff

for all 𝒂, 𝒃, 𝒄 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒃, 𝒄 ∈ 𝑹 → 𝐚, 𝐜 ∈ 𝑹]

= on Σ∗ is symmetric, for all 𝑎, 𝑏 ∈ Σ∗ if 𝑎 = 𝑏 then 𝑏 = 𝑎.
⊆ is not symmetric on 𝒫(𝒰) – 1,2,3 ⊆ {1,2,3,4} but 1,2,3,4 ⊈ {1,2,3}

= on Σ∗ is transitive, for all 𝑎, 𝑏, 𝑐 ∈ Σ∗ if 𝑎 = 𝑏 and 𝑏 = c then 𝑎 = 𝑐.
⊆ is transitive on 𝒫(𝒰) – for any sets 𝐴, 𝐵, 𝐶 if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶 then 𝐴 ⊆ 𝐶.
∈ is not a transitive relation – 1 ∈ {1,2,3}, 1,2,3 ∈ 𝒫(1,2,3) but 1 ∉ 𝒫 1,2,3 .

Warm up
Show that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 if and only if 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)
𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 ↔ 𝑛|(𝑏 − 𝑎) ↔ 𝑛𝑘 = 𝑏 − 𝑎 for 𝑘 ∈ ℤ ↔
𝑛(−𝑘) = 𝑎 − 𝑏(for − k ∈ ℤ) ↔ 𝑛| 𝑎 − 𝑏 ↔ 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

Show that 𝑎%𝑛=(𝑎 − 𝑛)%𝑛 Where 𝑏%𝑐 is the unique 𝑟 such that 𝑏 =
𝑘𝑐 + 𝑟 for some integer 𝑘.
By definition of %, 𝑎 = 𝑞𝑛 + (𝑎%𝑛) for some integer 𝑞. Subtracting 𝑛,
𝑎 − 𝑛 = 𝑞 − 1 𝑛 + (𝑎%𝑛). Observe that 𝑞 − 1 is an integer, and that
this is the form of the division theorem for 𝑎 − 𝑛 %𝑛. Since the division
theorem guarantees a unique integer, 𝑎 − 𝑛 %𝑛 = (𝑎%𝑛)

This was a proof that the relation { 𝒂, 𝒃 ∶ 𝒂 ≡ 𝒃 𝒎𝒐𝒅 𝒏 } is symmetric!

It was actually overkill to show if and only if. Showing just one direction
turns out to be enough!

You’ve also done a proof of transitivity!

You did this proof on HW4. You were showing:
| is a transitive relation on ℤ!.

More Properties of relations
What do we do with relations? Usually we prove properties about them.

Antisymmetry
A binary relation 𝑅 on a set 𝑺 is “antisymmetric” iff

for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Reflexivity
A binary relation 𝑅 on a set 𝑺 is “reflexive” iff

for all 𝒂 ∈ 𝑺, [𝒂, 𝒂 ∈ 𝑹]

≤ is antisymmetric on ℤ

≤≤ is reflexive on ℤ

You’ve proven antisymmetry too!

You showed | is antisymmetric on ℤ!

for all 𝑎, 𝑏 ∈ 𝑆, [𝑎, 𝑏 ∈ 𝑅 ∧ b, a ∈ 𝑅 → 𝑎 = 𝑏] is equivalent to the
definition in the box above
The box version is easier to understand, the other version is usually
easier to prove.

Antisymmetry
A binary relation 𝑅 on a set 𝑺 is “antisymmetric” iff

for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Try a few of your own
Decide whether each of these relations are
Reflexive, symmetric, antisymmetric, and
transitive.
⊆ on 𝒫(𝒰)
≥ on ℤ
> on ℝ
| on ℤ!

| on ℤ
≡ (𝑚𝑜𝑑 3) on ℤ

Fill out the poll everywhere for
Activity Credit!

Go to pollev.com/cse311 and login
with your UW identity

Or text cse311 to 37607

Symmetry: for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 → 𝐛, 𝐚 ∈ 𝑹]

Transitivity: for all 𝒂, 𝒃, 𝒄 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒃, 𝒄 ∈ 𝑹 → 𝐚, 𝐜 ∈ 𝑹]

Antisymmetry: for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Reflexivity: for all 𝒂 ∈ 𝑺, [𝒂, 𝒂 ∈ 𝑹]

Try a few of your own
Decide whether each of these relations are
Reflexive, symmetric, antisymmetric, and
transitive.
⊆ on 𝒫 𝒰 reflexive, antisymmetric, transitive
≥ on ℤ reflexive, antisymmetric, transitive
> on ℝ antisymmetric, transitive
| on ℤ! reflexive, antisymmetric, transitive
| on ℤ reflexive, transitive
≡ (𝑚𝑜𝑑 3) on ℤ reflexive, symmetric, transitive

Symmetry: for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 → 𝐛, 𝐚 ∈ 𝑹]

Transitivity: for all 𝒂, 𝒃, 𝒄 ∈ 𝑺,
[𝒂, 𝒃 ∈ 𝑹 ∧ 𝒃, 𝒄 ∈ 𝑹 → 𝐚, 𝐜 ∈ 𝑹]

Antisymmetry: for all 𝒂, 𝒃 ∈ 𝑺, [𝒂, 𝒃 ∈ 𝑹 ∧ 𝒂 ≠ 𝒃 → 𝐛, 𝐚 ∉ 𝑹]

Reflexivity: for all 𝒂 ∈ 𝑺, [𝒂, 𝒂 ∈ 𝑹]

Two Prototype Relations
A lot of fundamental relations follow one of two prototypes:

A relation that is reflexive, symmetric, and transitive is
called an “equivalence relation”

Equivalence Relation

A relation that is reflexive, antisymmetric, and transitive is
called a “partial order”

Partial Order Relation

Equivalence Relations
Equivalence relations “act kinda like equals”
≡ (mod n) is an equivalence relation.
≡ on compound propositions is an equivalence relation.

Fun fact: Equivalence relations “partition” their elements.
An equivalence relation 𝑅 on 𝑆 divides 𝑆 into sets 𝑆", … 𝑆# such that.
∀𝑠 (𝑠 ∈ 𝑆$ for	some	𝑖)
∀𝑠, 𝑠% (𝑠, 𝑠% ∈ 𝑆$ for some 𝑖 if and only if 𝑠, 𝑠% ∈ 𝑅)
𝑆$ ∩ 𝑆& = ∅ for all 𝑖 ≠ 𝑗

Partial Orders
Partial Orders “behave kinda like less than or equal to”

In the sense that they put things in order
But it’s only kinda like less than – it’s possible that some elements can’t
be compared.

| on ℤ! is a partial order
⊆ on 𝒫(𝒰) is a partial order
𝑥 is a prerequisite of (or-equal-to) 𝑦 is a partial order on CSE courses

Why Bother?
If you prove facts about all equivalence relations or all partial orders,
you instantly get facts in lots of different contexts.
If you learn to recognize partial orders or equivalence relations, you can
get a lot of intuition for new concepts in a short amount of time.

Combining Relations
Given a relation 𝑅 from 𝐴 to 𝐵
And a relation 𝑆 from 𝐵 to 𝐶,

The relation 𝑆 ∘ 𝑅 from 𝐴 to 𝐶 is
{ 𝑎, 𝑐 ∶ ∃𝑏[𝑎, 𝑏 ∈ 𝑅 ∧ 𝑏, 𝑐 ∈ 𝑆]}

Yes, I promise it’s 𝑆 ∘ 𝑅 not 𝑅 ∘ 𝑆 – it makes more sense if you think
about relations (𝑥, 𝑓 𝑥) and (𝑥, 𝑔 𝑥)
But also don’t spend a ton of energy worrying about the order, we
almost always care about 𝑅 ∘ 𝑅, where order doesn’t matter.

Combining Relations
To combine relations, it’s a lot easier if we can see what’s happening.

We’ll use a representation of a directed graph

Directed Graphs
𝐺 = (𝑉, 𝐸)
𝑉 is a set of vertices (an underlying set of elements)
𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one
to the next).

Path 𝑣!, 𝑣", … , 𝑣# such that 𝑣$, 𝑣$%" ∈ 𝐸
Simple Path: path with all 𝑣$ distinct
Cycle: path with 𝑣! = 𝑣# (and 𝑘 > 0)
Simple Cycle: simple path plus edge
(𝑣# , 𝑣!) with 𝑘 > 0

Directed Graphs
𝐺 = (𝑉, 𝐸)
𝑉 is a set of vertices (an underlying set of elements)
𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one
to the next).

Path 𝑣!, 𝑣", … , 𝑣# such that 𝑣$, 𝑣$%" ∈ 𝐸
Simple Path: path with all 𝑣$ distinct
Cycle: path with 𝑣! = 𝑣# (and 𝑘 > 0)
Simple Cycle: simple path plus edge
(𝑣# , 𝑣!) with 𝑘 > 0

Directed Graphs
𝐺 = (𝑉, 𝐸)
𝑉 is a set of vertices (an underlying set of elements)
𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one
to the next).

Path 𝑣!, 𝑣", … , 𝑣# such that 𝑣$, 𝑣$%" ∈ 𝐸
Simple Path: path with all 𝑣$ distinct
Cycle: path with 𝑣! = 𝑣# (and 𝑘 > 0)
Simple Cycle: simple path plus edge
(𝑣# , 𝑣!) with 𝑘 > 0

Directed Graphs
𝐺 = (𝑉, 𝐸)
𝑉 is a set of vertices (an underlying set of elements)
𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one
to the next).

Path 𝑣!, 𝑣", … , 𝑣# such that 𝑣$, 𝑣$%" ∈ 𝐸
Simple Path: path with all 𝑣$ distinct
Cycle: path with 𝑣! = 𝑣# (and 𝑘 > 0)
Simple Cycle: simple path plus edge
(𝑣# , 𝑣!) with 𝑘 > 0

Representing Relations
To represent a relation 𝑅 on a set A, have a vertex for each element of 𝐴
and have an edge (𝑎, 𝑏) for every pair in 𝑅.

Let 𝐴 be {1,2,3,4} and 𝑅 be { 1,1 , 1,2 , 2,1 , 2,3 , 3,4 }

1

3 4

2

Combining Relations
If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑺 ∘ 𝑹 i.e. every pair (𝑎, 𝑐) with a 𝑏 with 𝑎, 𝑏 ∈ 𝑅 and 𝑏, 𝑐 ∈ 𝑆

1

3

2 1

3

2

Combining Relations

1

3

2 1

3

2

If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑺 ∘ 𝑹 i.e. every pair (𝑎, 𝑐) with a 𝑏 with 𝑎, 𝑏 ∈ 𝑅 and 𝑏, 𝑐 ∈ 𝑆

Combining Relations
Let 𝑅 be a relation on 𝐴.
Define 𝑅' as { 𝑎, 𝑎 ∶ 𝑎 ∈ 𝐴}

𝑅# = 𝑅#(" ∘ 𝑅
𝑎, 𝑏 ∈ 𝑅# if and only if there is a path of length 𝑘 from 𝑎 to 𝑏 in 𝑅.

We can find that on the graph!

More Powers of 𝑅.
For two vertices in a graph, 𝑎 can reach 𝑏 if there is a path from 𝑎 to 𝑏.

Let 𝑅 be a relation on the set 𝐴. The connectivity relation 𝑅∗ consists of
all pairs (𝑎, 𝑏) such that 𝑎 can reach 𝑏 (i.e. there is a path from 𝑎 to 𝑏 in
𝑅)

𝑅∗ = ⋃#*'
+ 𝑅#

Note we’re starting from 0 (the textbook makes the unusual choice of
starting from 𝑘 = 1).

What’s the point of 𝑅∗

𝑅∗ is also the “reflexive-transitive closure of 𝑅.”

It answers the question “what’s the minimum amount of edges I would
need to add to 𝑅 to make it reflexive and transitive.

Why care about that? The transitive-reflexive closure can be a summary
of data – you might want to precompute it so you can easily check if 𝑎
can reach 𝑏 instead of recomputing it every time.

Calculating 𝑅∗

For every vertex, add an edge from it to itself
While there is an edge (𝑎, 𝑏) and an edge (𝑏, 𝑐) but not the edge (𝑎, 𝑐),
add (𝑎, 𝑐).

How would you do this in code?
You could just iteratively add edges (would take about 𝑂(𝑛,) time if you
have 𝑛 elements in the set).
But there are tricks to do it faster (by about an 𝑛 factor) – take CSE 421
to learn them!

Relations and Graphs
Describe how each property will show up in the graph of a relation.
Reflexive

Symmetric

Antisymmetric

Transitive

Relations and Graphs
Describe how each property will show up in the graph of a relation.
Reflexive

Symmetric

Antisymmetric

Transitive

Every vertex has a “self-loop” (an edge from the vertex to itself)

Every edge has its “reverse edge” (going the other way) also in the graph.

No edge has its “reverse edge” (going the other way) also in the graph.

If there’s a length-2 path from 𝑎 to 𝑏 then there’s a direct edge from 𝑎 to 𝑏

Midterm Misconceptions

Induction Problem

𝑃 𝑛 : “Every properly ordered line with 𝑛 pairs has two consecutive
people wearing gold hats.”

We need to show a ∀ statement in the inductive step.
To prove a for all statement, the first thing we do in our proof is…

Introduce an arbitrary variable!

Induction Problem
So if you didn’t start with “let L be an arbitrary properly ordered line
with 𝑘 + 1 pairs of people” you didn’t start in the right place.

If you started with “an arbitrary properly ordered line with 𝑘 pairs”
There’s not formally a way to argue that “by listing out all the possible
alterations I could think of, I’ll end up with all the possible lines of length
𝑘 + 1”
You might have (you probably did) but it’s still not a rigorous argument of a forall
statement if you don’t start with an arbitrary line of length 𝑘 + 1.

Induction Problem
This kind of attempted induction argument (where you “build up” to a
supposedly arbitrary element from an arbitrary smaller element) easily
hides bugs. For that reason it’s not logically valid.
See: HW6 P6.

Never ever ever try to prove a “for all” induction by building up (ever).
Always start with the arbitrary big thing (the 𝑘 + 1 thing) and find the smaller thing
inside.

There is no rule of inference that says “I started with an arbitrary thing and did
some alterations and it’s now an arbitrary other thing”

Induction Problem
But wait…don’t we just do that when we prove inequalities by induction?

Nope!
1. Inequalities aren’t for-all statements (or if they are you introduce the
variable at the start, like we did for that string induction proof)
2. We prove inequalities the normal way we prove inequalities (either
starting from a fact you know and deriving the desired inequality, or
starting from the left hand side and altering it until you get the right
hand side).

Induction Problem
But wait, don’t we “build up” when we do structural induction?
Nope!

The recursive definition in structural induction guarantees us what the
arbitrary element looks like…it’s made up of two ‘smaller’ elements in
the set.
…and the template just lets us skip the words “let T be arbitrary, by the
recursive definition, T is of the form…”

Induction Problem
But wait, that stamp collecting problem. We definitely started with the
small one there.

The stamp collecting induction was an exists statement (there is a way
to build 𝑘 + 1). So yeah, we definitely didn’t have anything arbitrary
there.
Nor would we expect to – it was an exists statement!

Set Problems
Notes from the TAs
Be careful with set-builder notation

Using variables you’ve defined in spots where dummy variables are
expected:
1. Does not mean what you think it means.
2. “Hurts [your TA’s] brain”

Dummy Variables
A lot like a local variable in Java.
It means something only inside its method.

∫ 5𝑥-𝑑𝑥 𝑥 is a dummy variable. It means something inside the integral,
(so you can write 𝑑𝑥) but wouldn’t necessarily mean anything outside.
∃𝑥(𝑃 𝑥 ∧ 𝑄 𝑥) 𝑥 is a dummy variable.
{𝑦 ∶ 𝑦- ≥ 5} 𝑦 is a dummy variable

Dummy Variables
So if you said something like
Let 𝑦 be an arbitrary element of output,
Consider {𝑦: 𝑦 = 𝑥} this 𝑦 is not that 𝑦

Set Proofs
If you’re showing 𝐴 ⊆ 𝐵
Your first step should always be
Let 𝑥 be an arbitrary element of 𝐴.

A lot of you had attempted proofs where you tried to write
𝑜𝑢𝑡𝑝𝑢𝑡(𝑓, 𝐴 ∩ 𝐵) = 𝑦: ∃𝑥 𝑓 𝑥 = 𝑦 and modify the inside
𝑦 ∶ ∃𝑥 …

Don’t do this. It’s never how you do a set proof.

Set problems
This was a hard problem.
It’s what we call a “synthesis” problem – applying familiar ideas and
techniques in new combinations.
You should expect these types of problems in all of your future courses
if you haven’t seen them already; the end goal of university education is
synthesis.

You needed to combine set proofs, set builder notation, quantifier
notation (both exists and for-all) to do this problem.

When a problem is hard, it’s easy to get overwhelmed.
Take a deep breath, and do the 4-step process.

1. What do the words in the statement mean?
2. What does the statement as a whole mean?
3. Where do I start?
4. Where is my target?

Let 𝑓 be an arbitrary function, let 𝐴, 𝐵 be arbitrary sets.

Let 𝑓 be an arbitrary function, let 𝐴, 𝐵 be arbitrary sets.
Let 𝑦 be an arbitrary element of output(𝑓, 𝐴 ∩ 𝐵)

So 𝑦 ∈output(𝑓, 𝐴) ∩output(𝑓, 𝐵)

Let 𝑓 be an arbitrary function, let 𝐴, 𝐵 be arbitrary sets.
Let 𝑦 be an arbitrary element of output(𝑓, 𝐴 ∩ 𝐵)
By definition of output, there is an 𝑥 such that 𝑥 ∈ 𝐴 ∩ 𝐵 and 𝑓 𝑥 = 𝑦

𝑦 ∈output(𝑓, 𝐴) and 𝑦 ∈output(𝑓, 𝐵)
So 𝑦 ∈output(𝑓, 𝐴) ∩output(𝑓, 𝐵)

Let 𝑓 be an arbitrary function, let 𝐴, 𝐵 be arbitrary sets.
Let 𝑦 be an arbitrary element of output(𝑓, 𝐴 ∩ 𝐵)
By definition of output, there is an 𝑥 such that 𝑥 ∈ 𝐴 ∩ 𝐵 and 𝑓 𝑥 = 𝑦
Since 𝑥 ∈ 𝐴 ∩ 𝐵 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵.
So by definition of output, 𝑓 𝑥 = 𝑦 ∈output(𝑓, 𝐴) and 𝑓 𝑥 = 𝑦 ∈output(𝑓, 𝐵)
𝑦 ∈output(𝑓, 𝐴) and 𝑦 ∈output(𝑓, 𝐵)
So 𝑦 ∈output(𝑓, 𝐴) ∩output(𝑓, 𝐵)

