

Wrapping up CFGs,
Relations And Graphs

CSE 311 Winter 21
Lecture 20

Arithmetic

$$
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4|5| 6|7| 8 \mid 9
$$

Generate $(2 * x)+y$

$$
\begin{aligned}
& E \Rightarrow E+E \Rightarrow(E)+E \\
& \Rightarrow(E \times E)+E
\end{aligned}
$$

Generate $2+3 * 4$ in two different ways

Arithmetic

$$
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4|5| 6|7| 8 \mid 9
$$

Generate $(2 * x)+y$
$E \Rightarrow E+E \Rightarrow(E)+E \Rightarrow(E * E)+E \Rightarrow(2 * E)+E \Rightarrow(2 * x)+E \Rightarrow$ $(2 * x+y)$
Generate $2+3$ * 4in two different ways
$E \Rightarrow E+E \Rightarrow E+E * E \Rightarrow 2+E * E \Rightarrow 2+3 * E \Rightarrow 2+3 * 4$
$E \Rightarrow E * E \Rightarrow E+E * E \Rightarrow 2+E * E \Rightarrow 2+3 * E \Rightarrow 2+3 * 4$

Parse Trees

Suppose a context free grammar G generates a string x
A parse tree of x for G has
Rooted at S (start symbol)
Children of every A node are labeled with the characters of w for some $A \rightarrow w$ Reading the leaves from left to right gives x.

$$
S \rightarrow 0 S 0|1 S 1| 0|1| \varepsilon
$$

Back to the arithmetic

$E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4|5| 6|7| 8 \mid 9$

Two parse trees for $2+3 * 4$

How do we encode order of operations

If we want to keep "in order" we want there to be only one possible parse tree.
Differentiate between "things to add" and "things to multiply" Only introduce
introducing an
$E \rightarrow T \mid E+T$

$$
\xrightarrow{T} F \mid T * F
$$

$$
F \rightarrow(E) \mid N
$$

$$
N \rightarrow x|y| z|0| 1|2| 3|4| 5|6| 7|8| 9
$$

CAFs in practice

Used to define programming languages.
Often written in Backus-Naur Form - just different notation
Variables are <names-in-brackets>
like <if-then-else-statement>, <condition>, <identifier>
\rightarrow is replaced with ::= or :

BNF for C (no <...> and uses : instead of ::=)

```
statement:
    ((identifier | "case" constant-expression | "default") ":")*
    (expression? ";" |
    block |
    "if" "(" expression ")" statement |
    "if" "(" expression ")" statement "else" statement
    "switch" "(" expression ")" statement |
    "while" "(" expression ")" statement
    "do" statement "while" "(" expression ")" ";" |
    "for" "(" expression? ";" expression? ";" expression? ")" statement |
    "goto" identifier ";" |
    "continue" ";" |
    "break" ";"
    "return" expression? ";"
    )
block: "{" declaration* statement* "}"
expression:
    assignment-expression%
assignment-expression: (
        unary-expression (
            "=" | "*=" | "/=" | "名=" | "+=" | "-=" | "<<=" | ">>=" | "&=" |
            "^=" | "|="
        )
    )* conditional-expression
conditional-expression:
    logical-OR-expression ( "?" expression ":" conditional-expression )?
```


Parse Trees

Remember diagramming sentences in middle school?

<sentence>::= <noun phrase> <verb phrase>
<noun phrase>::= <determiner> <adjective> <noun>
<verb phrase>::=<verb> <adverb>|<verb> <object>
<object>::=<noun phrase>

Parse Trees

<sentence>::=<noun phrase> <verb phrase>
<noun phrase>::=<determiner><adjective> <noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::= <noun phrase>

The old man the boat.

The old man the boat

Power of Context Free Languages

There are languages CFGs can express that regular expressions can't e.g. palindromes

What about vice versa - is there a language that a regular expression can represent that a CFG can't?
No!

$$
\text { Largnages Regeyps }^{\& \text { Languages }}
$$

Are there languages even CFGs cannot represent?
Yes!
$\left\{0^{k} 1^{j} 2^{k} 3^{j} \mid j, k \geq 0\right\}$ cannot be written with a context free grammar.

Takeaways

CFGs and regular expressions gave us ways of succinctly representing sets of strings
Regular expressions super useful for representing things you need to search for CFGs represent complicated languages like "java code with valid syntax"

Soon, we'll talk about how each of these are "equivalent to weaker computers."

Next time: Two more tools for our toolbox.

Relations and Graphs

Relations

Relations

A (binary) relation from A to B is a subset of $A \times B$ A (binary) relation on A is a subset of $A \times A$

Wait what?

$$
\text { " }=\| \text { on } \mathbb{R} \quad(a, a) \quad \forall a \in \mathbb{R}
$$

\leq is a relation on \mathbb{Z}.
" $3 \leq 4$ " is a way of saying " 3 relates to 4 " (for the \leq relation)
$(3,4)$ is an element of the set that defines the relation.

Relations, Examples

It turns out, they've been here the whole time
$<$ on \mathbb{R} is a relation
I.e. $\{(x, y): x<y$ and $x, y \in \mathbb{R}\}$.
$=$ on Σ^{*} is a relation
i.e. $\left\{(x, y): x=y\right.$ and $\left.x, y \in \Sigma^{*}\right\}$

For your favorite function f, you can define a relation from its domain to its co-domain
i.e. $\{(x, y): f(x)=y\}$
" x when squared gives y " is a relation
i.e. $\left\{(x, y): x^{2}=y, x, y \in \mathbb{R}\right\}$

Relations, Examples
Fix a universal set \mathcal{U}.
\subseteq is a relation. What's it on?

$$
\underset{\mathcal{P}(u)}{\underset{S_{u}}{ } \operatorname{Set}_{1} \leq \operatorname{Set}_{2}}
$$

$$
\text { Set }_{1}, \text { set }_{2} \in P(u)
$$

The set of all subsets of \mathcal{U}

More Relations

$R_{1}=\{(a, 1),(a, 2),(b, 1),(b, 3),(c, 3)\}$
Is a relation (you can define one just by listing what relates to what)

Equivalence $\bmod 5$ is a relation.
$\{(x, y): x \equiv y(\bmod 5)\}$
We'll also say "x relates to y if and only if they're congruent mod 5"

Properties of relations

What do we do with relations? Usually we prove properties about them.

Symmetry

A binary relation R on a set S is "symmetric" iff for all $a, b \in S,[(a, b) \in R \rightarrow(b, a) \in R]$
$=$ on Σ^{*} is symmetric, for all $a, b \in \Sigma^{*}$ if $a=b$ then $b=a$.
\subseteq is not symmetric on $\mathcal{P}(\mathcal{U})-\{1,2,3\} \subseteq\{1,2,3,4\}$ but $\{1,2,3,4\} \nsubseteq\{1,2,3\}$

Transitivity

A binary relation R on a set S is "transitive" iff for all $a, b, c \in S,[(a, b) \in R \wedge(b, c) \in R \rightarrow(a, c) \in R]$
$=$ on Σ^{*} is transitive, for all $a, b, c \in \Sigma^{*}$ if $a=b$ and $b=\mathrm{c}$ then $a=c$.
\subseteq is transitive on $\mathcal{P}(\mathcal{U})$ - for any sets A, B, C if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.
\in is not a transitive relation $-1 \in\{1,2,3\},\{1,2,3\} \in \mathcal{P}(\{1,2,3\})$ but $1 \notin \mathcal{P}(\{1,2,3\})$.

Warm up

Show that $a \equiv b(\bmod n)$ if and only if $b \equiv a(\bmod n)$
$a \equiv b(\bmod n) \leftrightarrow n \mid(b-a) \leftrightarrow n k=b-a($ for $k \in \mathbb{Z}) \leftrightarrow$ $n(-k)=a-b($ for $-\mathrm{k} \in \mathbb{Z}) \leftrightarrow n \mid(a-b) \leftrightarrow b \equiv a(\bmod n)$

This was a proof that the relation $\{(a, b): a \equiv b(\bmod n)\}$ is symmetric!
It was actually overkill to show if and only if. Showing just one direction turns out to be enough!
this is the form of the division theorem for $(a-n) \% n$. Since the division theorem guarantees a unique integer, $(a-n) \% n=(a \% n)$

You've also done a proof of transitivity!

5. Divide[s] we fall [14 points]

(a) Write an English proof showing that for any positive integers p, q, r if $p \mid q$ and $q \mid r$ then $p \mid r$. [8 points]

You did this proof on HW4. You were showing: \mid is a transitive relation on \mathbb{Z}^{+}.

More Properties of relations

What do we do with relations? Usually we prove properties about them.

Antisymmetry

A binary relation R on a set S is "antisymmetric" iff for all $a, b \in S,[(a, b) \in R \wedge a \neq b \rightarrow(b, a) \notin R]$

$$
\leq \text { is antisymmetric on } \mathbb{Z}
$$

Reflexivity

A binary relation R on a set S is "reflexive" iff for all $a \in S,[(a, a) \in R]$

[^0]\leq

You've proven antisymmetry too!

(b) Write an English proof showing that for any positive integers p, q if $p \mid q$ and $q \mid p$, then $p=q$. For this problem, you may not use the result of Section 4's problem 5a as a fact, but you may find that proof useful to model yours after. [6 points]

Antisymmetry

A binary relation R on a set S is "antisymmetric" iff for all $a, b \in S,[(a, b) \in R \wedge a \neq b \rightarrow(b, a) \notin R]$
You showed \mid is antisymmetric on \mathbb{Z}^{+} for all $a, b \in S,[(a, b) \in R \wedge(\mathrm{~b}, \mathrm{a}) \in R \rightarrow a=b]$ is equivalent to the definition in the box above
The box version is easier to understand, the other version is usually easier to prove.

Try a few of your own

Fill out the poll everywhere for Activity Credit!

Go to pollev.com/cse311 and login with your UW identity
Or text cse311 to 37607 Reflexive, symmetric, antisymmetric, and
\subseteq on $\mathcal{P}(\mathcal{U})$
\geq on \mathbb{Z}
$>$ on \mathbb{R}
| on \mathbb{Z}^{+}
Reflexivity: for all $a \in S,[(a, a) \in R]$
| on \mathbb{Z}
$\equiv(\bmod 3)$ on \mathbb{Z}

Try a few of your own

Decide whether each of these relations are Reflexive, symmetric, antisymmetric, and transitive.
\subseteq on $\mathcal{P}(\mathcal{U})$ reflexive, antisymmetric, transitive
\geq on \mathbb{Z} reflexive, antisymmetric, transitive
$>$ on \mathbb{R} antisymmetric, transitive
| on \mathbb{Z}^{+}reflexive, antisymmetric, transitive
| on \mathbb{Z} reflexive, transitive
$\equiv(\bmod 3)$ on \mathbb{Z} reflexive, symmetric, transitive

Transitivity: for all $a, b, c \in S$,
$[(a, b) \in R \wedge(b, c) \in R \rightarrow(\mathrm{a}, \mathrm{c}) \in R]$
Reflexivity: for all $a \in S,[(a, a) \in R]$

Two Prototype Relations

A lot of fundamental relations follow one of two prototypes:

Equivalence Relation

A relation that is reflexive, symmetric, and transitive is called an "equivalence relation"

Partial Order Relation

A relation that is reflexive, antisymmetric, and transitive is called a "partial order"

Equivalence Relations

Equivalence relations "act kinda like equals"
$\equiv(\bmod n)$ is an equivalence relation.
\equiv on compound propositions is an equivalence relation.

Fun fact: Equivalence relations "partition" their elements.
An equivalence relation R on S divides S into sets $S_{1}, \ldots S_{k}$ such that.
$\forall s\left(s \in S_{i}\right.$ for some $\left.i\right)$
$\forall s, s^{\prime}\left(s, s^{\prime} \in S_{i}\right.$ for some i if and only if $\left.\left(s, s^{\prime}\right) \in R\right)$
$S_{i} \cap S_{j}=\varnothing$ for all $i \neq j$

Partial Orders

Partial Orders "behave kinda like less than or equal to"

In the sense that they put things in order
But it's only kinda like less than - it's possible that some elements can't be compared.
| on \mathbb{Z}^{+}is a partial order
\subseteq on $\mathcal{P}(\mathcal{U})$ is a partial order
x is a prerequisite of (or-equal-to) y is a partial order on CSE courses

Why Bother?

If you prove facts about all equivalence relations or all partial orders, you instantly get facts in lots of different contexts.
If you learn to recognize partial orders or equivalence relations, you can get a lot of intuition for new concepts in a short amount of time.

Combining Relations

Given a relation R from A to B
And a relation S from B to C,

The relation $S \circ R$ from A to C is
$\{(a, c): \exists b[(a, b) \in R \wedge(b, c) \in S]\}$

Yes, I promise it's $S \circ R$ not $R \circ S$ - it makes more sense if you think about relations $(x, f(x))$ and $(x, g(x))$
But also don't spend a ton of energy worrying about the order, we almost always care about $R \circ R$, where order doesn't matter.

Combining Relations

To combine relations, it's a lot easier if we can see what's happening.

We'll use a representation of a directed graph

Directed Graphs

$G=(V, E)$
V is a set of vertices (an underlying set of elements)
E is a set of edges (ordered pairs of vertices; i.e. connections from one to the next).

Path $v_{0}, v_{1}, \ldots, v_{k}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ Simple Path: path with all v_{i} distinct Cycle: path with $v_{0}=v_{k}($ and $k>0)$ Simple Cycle: simple path plus edge (v_{k}, v_{0}) with $k>0$

Directed Graphs

$G=(V, E)$
V is a set of vertices (an underlying set of elements)
E is a set of edges (ordered pairs of vertices; i.e. connections from one to the next).

Path $v_{0}, v_{1}, \ldots, v_{k}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ Simple Path: path with all v_{i} distinct Cycle: path with $v_{0}=v_{k}($ and $k>0)$ Simple Cycle: simple path plus edge (v_{k}, v_{0}) with $k>0$

Directed Graphs

$G=(V, E)$
V is a set of vertices (an underlying set of elements)
E is a set of edges (ordered pairs of vertices; i.e. connections from one to the next).

Path $v_{0}, v_{1}, \ldots, v_{k}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ Simple Path: path with all v_{i} distinct Cycle: path with $v_{0}=v_{k}($ and $k>0)$ Simple Cycle: simple path plus edge (v_{k}, v_{0}) with $k>0$

Directed Graphs

$G=(V, E)$
V is a set of vertices (an underlying set of elements)
E is a set of edges (ordered pairs of vertices; i.e. connections from one to the next).

Path $v_{0}, v_{1}, \ldots, v_{k}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ Simple Path: path with all v_{i} distinct Cycle: path with $v_{0}=v_{k}($ and $k>0)$ Simple Cycle: simple path plus edge (v_{k}, v_{0}) with $k>0$

Representing Relations

To represent a relation R on a set A, have a vertex for each element of A and have an edge (a, b) for every pair in R.

Let A be $\{1,2,3,4\}$ and R be $\{(1,1),(1,2),(2,1),(2,3),(3,4)\}$

Combining Relations

If $S=\{(2,2),(2,3),(3,1)\}$ and $\boldsymbol{R}=\{(\mathbf{1}, \mathbf{2}),(\mathbf{2}, \mathbf{1}),(\mathbf{1}, 3)\}$
Compute $\boldsymbol{S} \circ \boldsymbol{R}$ i.e. every pair (a, c) with a b with $(a, b) \in R$ and $(b, c) \in S$

Combining Relations

If $S=\{(2,2),(2,3),(3,1)\}$ and $\boldsymbol{R}=\{(\mathbf{1}, \mathbf{2}),(\mathbf{2}, \mathbf{1}),(\mathbf{1}, 3)\}$
Compute $\boldsymbol{S} \circ \boldsymbol{R}$ i.e. every pair (a, c) with a b with $(a, b) \in R$ and $(b, c) \in S$

Combining Relations

Let R be a relation on A.
Define R^{0} as $\{(a, a): a \in A\}$
$R^{k}=R^{k-1} \circ R$
$(a, b) \in R^{k}$ if and only if there is a path of length k from a to b in R. We can find that on the graph!

More Powers of R.

For two vertices in a graph, a can reach b if there is a path from a to b.

Let R be a relation on the set A. The connectivity relation R^{*} consists of all pairs (a, b) such that a can reach b (i.e. there is a path from a to b in R)
$R^{*}=\bigcup_{k=0}^{\infty} R^{k}$

Note we're starting from 0 (the textbook makes the unusual choice of starting from $k=1$).

What's the point of R^{*}

R^{*} is also the "reflexive-transitive closure of R.

It answers the question "what's the minimum amount of edges I would need to add to R to make it reflexive and transitive.

Why care about that? The transitive-reflexive closure can be a summary of data - you might want to precompute it so you can easily check if a can reach b instead of recomputing it every time.

Relations and Graphs

Describe how each property will show up in the graph of a relation. Reflexive

Symmetric

Antisymmetric

Transitive

Relations and Graphs

Describe how each property will show up in the graph of a relation.
Reflexive
Every vertex has a "self-loop" (an edge from the vertex to itself)
Symmetric
Every edge has its "reverse edge" (going the other way) also in the graph.
Antisymmetric
No edge has its "reverse edge" (going the other way) also in the graph.
Transitive
If there's a length-2 path from a to b then there's a direct edge from a to b

[^0]: \leq is reflexive on \mathbb{Z}

