
Induction CSE 311 Autumn 20
Lecture 14

Announcements:

HW5 has a couple questions which have 
been converted to extra credit

Exam… see next slide.



Exam: We will randomly assign you to a group of size 4; 

• You are welcome to collaborate within that group 
• You may not collaborate with other people or groups. 
• Writing up your own solution according to our whiteboard policy still required.
• You can refer to this class’s materials but you may not refer to other textbooks/other courses’ materials.
• Ed will be set so that students can only ask private posts during the exam; we will intermittently make 

announcements for clarifications via Ed. We will answer clarifying questions, but content-related
questions will not be answered.

• Any evidence that you collaborated between groups, posted a question related to our exam on any 
forum or discussion board (besides clarifying private questions on Ed), or referred to external
materials, will result in a 0 on the entire exam.

• Dates of exam: Tuesday 2/16 at 12:00 am through Thursday 2/18 at 11:59 pm of next week. 
• No class on Wednesday.
• We will announce your groups on Friday.



How do we know recursion works?
//Assume i is a nonnegative integer
//returns 2^i.
public int CalculatesTwoToTheI(int i){

if(i == 0)
return 1;

else
return 2*CaclulatesTwoToTheI(i-1);

}

Why does CalculatesTwoToTheI(4) calculate 2^4?
Convince the other people in your room 



Induction
Your new favorite proof technique!
How do we show ∀𝑛, 𝑃(𝑛)?

Show 𝑃(0)
Show ∀𝑘(𝑃 𝑘 → 𝑃 𝑘 + 1 )



Induction

Let 𝑃(𝑖) be “CalculatesTwoToTheI(i)” returns 2! .
Note that if the input 𝑖 is 0, then the if-statement evaluates to true, and 
1 = 2^0 is returned, so 𝑃(0) is true.
Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0.

So 𝑃(𝑘 + 1) holds.
Therefore 𝑃(𝑛) holds for all 𝑛 ≥ 0 by the principle of induction.

//Assume i is a nonnegative integer
public int CalculatesTwoToTheI(int i){

if(i == 0)
return 1;

else
return 2*CaclulatesTwoToTheI(i-1);

}



Making Induction Proofs Pretty

Let 𝑃(𝑖) be “CalculatesTwoToTheI(i)” returns 2! .
Base Case (𝑖 = 0) Note that if the input 𝑖 is 0, then the if-statement 
evaluates to true, and 1 = 2^0 is returned, so 𝑃(0) is true.
Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0.
Inductive Step: Since 𝑘 ≥ 0, 𝑘 ≥ 1, so the code goes to the recursive case. 
We will return 2 ⋅ CalculatesTwoToTheI(k). By Inductive Hypothesis, 
CalculatesTwoToTheI(k)= 2" . Thus we return 2 ⋅ 2" = 2"#$.

So 𝑃(𝑘 + 1) holds.
Therefore 𝑃(𝑛) holds for all 𝑛 ≥ 0 by the principle of induction.



Making Induction Proofs Pretty
All of our induction proofs will come in 5 easy(?) steps!
1. Define 𝑃(𝑛). State that your proof is by induction on 𝑛.
2. Show 𝑃(0) i.e. show the base case
3. Suppose 𝑃(𝑘) for an arbitrary 𝑘. 
4. Show 𝑃 𝑘 + 1 (i.e. get 𝑃 𝑘 → 𝑃(𝑘 + 1))
5. Conclude by saying 𝑃 𝑛 is true for all 𝑛 by induction. 



Some Other Notes
Always state where you use the inductive hypothesis when you’re using 
it in the inductive step.
It’s usually the key step, and the reader really needs to focus on it.

Be careful about what values you’re assuming the Inductive Hypothesis 
for – the smallest possible value of 𝑘 should assume the base case but 
nothing more. 



The Principle of Induction (formally)

Informally: if you knock over one domino, and every domino knocks 
over the next one, then all your dominoes fell over.

𝑃 0 ; ∀𝑘(𝑃 𝑘 → 𝑃 𝑘 + 1 )

∴ ∀𝑛(𝑃 𝑛 )
Principle of 
Induction



More Induction
Induction doesn’t only work for code!
Show that ∑!%&' 2! = 1 + 2 + 4 +⋯+ 2' = 2'#$ − 1.



More Induction
Induction doesn’t only work for code!
Show that ∑!%&' 2! = 1 + 2 + 4 +⋯+ 2' = 2'#$ − 1.
Let 𝑃 𝑛 =“∑!%&' 2! = 2'#$ − 1.”
We show 𝑃(𝑛) holds for all 𝑛 by induction on 𝑛.
Base Case ( )
Inductive Hypothesis:
Inductive Step: 

𝑃(𝑛) holds for all 𝑛 ≥ 0 by the principle of induction.



More Induction
Induction doesn’t only work for code!
Show that ∑!%&' 2! = 1 + 2 + 4 +⋯+ 2' = 2'#$ − 1.
Let 𝑃 𝑛 =“∑!%&' 2! = 2'#$ − 1.”
We show 𝑃(𝑛) holds for all 𝑛 by induction on 𝑛.
Base Case (𝑛 = 0)∑!%&& 2! = 1 = 2 − 1 = 2&#$ − 1.
Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0.
Inductive Step: We show 𝑃(𝑘 + 1). Consider the summation∑!%&"#$ 2! =
2(#$ + ∑!%&" 2! = 2"#$ + 2"#$ − 1 , where the last step is by IH.
Simplifying, we get: ∑!%&"#$ 2! = 2"#$ + 2"#$ − 1 = 2 ⋅ 2"#$ − 1 =
2 "#$ #$ − 1.
𝑃(𝑛) holds for all 𝑛 ≥ 0 by the principle of induction.



Let’s Try Another Induction Proof

Let 𝑔 𝑛 = 82 if 𝑛 = 2
𝑔(𝑛 − 1)) + 3𝑔 𝑛 − 1 if 𝑛 > 2

Prove 𝑔(𝑛) is even for all 𝑛 ≥ 2 by induction on 𝑛.

Let’s just set this one up, we’ll leave the individual pieces as exercises.



Setup
Let 𝑃(𝑛) be “𝑔(𝑛) is even.”

HEY WAIT -- 𝑃(0) isn’t true 𝑔(0) isn’t even defined!

We can move the “starting line”

Change the base case, and then update the IH to have the smallest 
value of 𝑘 assume just the base case.



Setup
Let 𝑃(𝑛) be “𝑔(𝑛) is even.”
We show 𝑃 𝑛 for all 𝑛 ≥ 2 by induction on 𝑛.
Base Case (𝒏 = 𝟐): 𝑔 𝑛 = 2 by definition. 2 is even, so we have 𝑃(2).
Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary k ≥ 2.
Inductive Step: We show 𝑃(𝑘 + 1). Consider 𝑔(𝑘 + 1). By definition of
𝑔 ⋅ , 𝑔 𝑘 + 1 = 𝑔(𝑘)) + 3𝑔 𝑘 . By inductive hypothesis, 𝑔(𝑘) is even, 
so it equals 2𝑗 for some integer 𝑗. Plugging in we have:
𝑔 𝑘 + 1 = 2𝑗 ) + 3 2𝑗 = 2 2𝑗) + 2 3𝑗 = 2(2𝑗) + 3𝑗).
Since 𝑗 is an integer, 2𝑗) + 3𝑗 is also an integer, and 𝑔(𝑘 + 1) is even.
Therefore, 𝑃(𝑛) holds for all 𝑛 ≥ 2 by the principle of induction.



Making Induction Proofs Pretty
All of our induction proofs will come in 5 easy(?) steps!
1. Define 𝑃(𝑛). State that your proof is by induction on 𝑛.
2. Base Case: Show 𝑃(𝑏) i.e. show the base case
3. Inductive Hypothesis: Suppose 𝑃(𝑘) for an arbitrary 𝑘 ≥ 𝑏. 
4. Inductive Step: Show 𝑃 𝑘 + 1 (i.e. get 𝑃 𝑘 → 𝑃(𝑘 + 1))
5. Conclude by saying 𝑃 𝑛 is true for all 𝑛 ≥ 𝑏 by the principle of 
induction. 



Let’s Try Another Induction Proof

Uniqueness is hard. Let’s just show existence. 
I.e. 
Claim: Every positive integer greater than 1 can be written as a product 
of primes. 

Every positive integer greater than 1 has a unique 
prime factorization.

Fundamental Theorem of Arithmetic



Induction on Primes.
Let 𝑃(𝑖) be “𝑖 can be written as a product of primes.”
We show 𝑃(𝑛) for all 𝑛 ≥ 2 by induction on 𝑛.
Base Case (𝒏 = 𝟐): 2 is a product of just itself. Since 2 is prime, it is written as a 
product of primes. 
Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary integer 𝑘 ≥ 2.
Inductive Step: 
Case 1, 𝑘 + 1 is prime: then 𝑘 + 1 is automatically written as a product of primes.
Case 2, 𝑘 + 1 is composite: 

Therefore 𝑃(𝑘 + 1). 
𝑃(𝑛) holds for all 𝑛 ≥ 2 by the principle of induction. 



We’re Stuck
We can divide 𝑘 + 1 up into smaller pieces (say 𝑠, 𝑡 such that 𝑠𝑡 = 𝑘 + 1
with 2 ≤ 𝑠 < 𝑘 + 1 and 2 ≤ 𝑡 < 𝑘 + 1

Is 𝑃(𝑠) true? Is 𝑃(𝑡) true?
I mean…it would be…
But in the inductive step we don’t have it…
Let’s add it to our inductive hypothesis.



Induction on Primes
Let 𝑃(𝑖) be “𝑖 can be written as a product of primes.”
We show 𝑃(𝑛) for all 𝑛 ≥ 2 by induction on 𝑛.
Base Case (𝒏 = 𝟐): 2 is a product of just itself. Since 2 is prime, it is written as a 
product of primes. 
Inductive Hypothesis:
Inductive Step: 
Case 1, 𝑘 + 1 is prime: then 𝑘 + 1 is automatically written as a product of primes.
Case 2, 𝑘 + 1 is composite: 

Therefore 𝑃(𝑘 + 1). 
𝑃(𝑛) holds for all 𝑛 ≥ 2 by the principle of induction. 



Induction on Primes
Let 𝑃(𝑖) be “𝑖 can be written as a product of primes.”
We show 𝑃(𝑛) for all 𝑛 ≥ 2 by induction on 𝑛.
Base Case (𝒏 = 𝟐): 2 is a product of just itself. Since 2 is prime, it is written as a 
product of primes. 
Inductive Hypothesis: Suppose 𝑃 2 ,… , 𝑃 𝑘 hold for an arbitrary integer 𝑘 ≥ 2.
Inductive Step: 
Case 1, 𝑘 + 1 is prime: then 𝑘 + 1 is automatically written as a product of primes.
Case 2, 𝑘 + 1 is composite: We can write 𝑘 + 1 = 𝑠𝑡 for 𝑠, 𝑡 nontrivial divisors (i.e.
2 ≤ 𝑠 < 𝑘 + 1 and 2 ≤ 𝑡 < 𝑘 + 1). By inductive hypothesis, we can write 𝑠 as a 
product of primes 𝑝! ⋅ … 𝑝" and 𝑡 as a product of primes 𝑞!⋯𝑞ℓ.Multiplying these 
representations, 𝑘 + 1 = 𝑝!⋯𝑝" ⋅ 𝑞!⋯𝑞ℓ, which is a product of primes.
Therefore 𝑃(𝑘 + 1). 
𝑃(𝑛) holds for all 𝑛 ≥ 2 by the principle of induction. 



Strong Induction
That hypothesis where we assume 𝑃 base case , … , 𝑃(𝑘) instead of just 
𝑃(𝑘) is called a strong inductive hypothesis. 

Strong induction is the same fundamental idea as weak (“regular”) 
induction.
𝑃(0) is true.

And 𝑃 0 → 𝑃(1), so 𝑃 1 .
And 𝑃 1 → 𝑃(2), so 𝑃 2 .
And 𝑃 2 → 𝑃(3), so 𝑃 3 .
And 𝑃 3 → 𝑃(4), so 𝑃 4 .
…

𝑃(0) is true.
And 𝑃 0 → 𝑃(1), so 𝑃 1 .
And [P 0 ∧ 𝑃 1 ] → 𝑃(2), so 𝑃 2 .
And [P 0 ∧ ⋯∧ 𝑃 2 ] → 𝑃(3), so 𝑃 3 .
And[P 0 ∧ ⋯∧ 𝑃 3 ] → 𝑃(4), so 𝑃 4 .
…



Making Induction Proofs Pretty
All of our strong induction proofs will come in 5 easy(?) steps!
1. Define 𝑃(𝑛). State that your proof is by induction on 𝑛.
2. Base Case: Show 𝑃(𝑏) i.e. show the base case
3. Inductive Hypothesis: Suppose P b ∧ ⋯∧ 𝑃(𝑘) for an arbitrary 𝑘 ≥ 𝑏. 
4. Inductive Step: Show 𝑃 𝑘 + 1 (i.e. get [P b ∧ ⋯∧ 𝑃(𝑘)] → 𝑃(𝑘 + 1))
5. Conclude by saying 𝑃 𝑛 is true for all 𝑛 ≥ 𝑏 by the principle of 
induction. 



Strong Induction vs. Weak Induction
Think of strong induction as “my recursive call might be on LOTS of 
smaller values” (like mergesort – you cut your array in half)

Think of weak induction as “my recursive call is always on one step 
smaller.”
Practical advice:
A strong hypothesis isn’t wrong when you only need a weak one (but a 
weak one is wrong when you need a strong one). Some people just 
always write strong hypotheses. But it’s easier to typo a strong 
hypothesis.
Robbie leaves a blank spot where the IH is, and fills it in after the step.



Practical Advice
How many base cases do you need?
Always at least one.
If you’re analyzing recursive code or a recursive function, at least one for each base 
case of the code/function.
If you always go back 𝑠 steps, at least 𝑠 consecutive base cases.
Enough to make sure every case is handled.



Monochromatic Cows
Consider the following statements.

Suppose each cow is only one color. 
Every group of cows contain only cows of the same color. 

Spoof by strong induction:
P(1): all groups of cows of size one contain only cows of one color. 
(IH): 𝑃 𝑘 → 𝑃(𝑘 + 1) for all 𝑘 ≥ 1.

Consider a group of 𝑘 + 1 ≥ 2 cows. 
By our IH, all groups of size ≥ 𝑘 contain cows of only one color. 
So, break the 𝑘 + 1 cows into 2 overlapping subgroups;

these by our IH are all the same color,
and since they share a cow in common the 2 groups are the same color.

Fill out the poll everywhere for 
Activity Credit!

Go to pollev.com/cse311 and 
login with your UW identity
Or text cse311 to 22333



Let’s Try Another! Stamp Collecting
I have 4 cent stamps and 5 cent stamps (as many as I want of each). 
Prove that I can make exactly 𝑛 cents worth of stamps for all 𝑛 ≥ 12.

Try for a few values.
Then think…how would the inductive step go?



Stamp Collection (attempt)
Define 𝑃(𝑛) I can make 𝑛 cents of stamps with just 4 and 5 cent stamps.
We prove 𝑃(𝑛) is true for all 𝑛 ≥ 12 by induction on 𝑛.
Base Case:
12 cents can be made with three 4 cent stamps.
Inductive Hypothesis Suppose [maybe some other stuff and] 𝑃(𝑘), for an 
arbitrary 𝑘 ≥ 12.
Inductive Step:
We want to make 𝑘 + 1 cents of stamps. By IH we can make 𝑘 − 3 cents 
exactly with stamps. Adding another 4 cent stamp gives exactly 𝑘 + 1
cents. 



Stamp Collection
Is the proof right?

How do we know 𝑃(13)
We’re not the base case, so our inductive hypothesis assumes 𝑃(12), 
and then we say if 𝑃 9 then 𝑃(13).

Wait a second….
If you go back 𝑠 steps every time, you need 𝑠 base cases. 
Or else the first few values aren’t proven.



Stamp Collection
Define 𝑃(𝑛) I can make 𝑛 cents of stamps with just 4 and 5 cent stamps.
We prove 𝑃(𝑛) is true for all 𝑛 ≥ 12 by induction on 𝑛.
Base Case:
12 cents can be made with three 4 cent stamps.
13  cents can be made with two 4 cent stamps and one 5 cent stamp.
14 cents can be made with one 4 cent stamp and two 5 cent stamps.
15 cents can be made with three 5 cent stamps.
Inductive Hypothesis Suppose P 12 ∧ 𝑃 13 ∧ ⋯∧ 𝑃(𝑘), for an arbitrary 𝑘 ≥ 15.
Inductive Step:
We want to make 𝑘 + 1 cents of stamps. By IH we can make 𝑘 − 3 cents exactly 
with stamps. Adding another 4 cent stamp gives exactly 𝑘 + 1 cents. 



A good last check
After you’ve finished writing an inductive proof, pause.

If your inductive step always goes back 𝑠 steps, you need 𝑠 base cases 
(otherwise 𝑏 + 1 will go back before the base cases you’ve shown). And 
make sure your inductive hypothesis is strong enough.

If your inductive step is going back a varying (unknown) number of 
steps, check the first few values above the base case, make sure your 
cases are really covered. And make sure your IH is strong.



Making Induction Proofs Pretty
All of our induction proofs will come in 5 easy(?) steps!
1. Define 𝑃(𝑛). State that your proof is by induction on 𝑛.
2. Base Cases: Show 𝑃 𝑏*!' , 𝑃 𝑏*!'#$ …𝑃(𝑏*+,) i.e. show the base 
cases
3. Inductive Hypothesis: Suppose 𝑃 𝑏*!' ∧ 𝑃 𝑏*!' + 1 ∧⋯∧ 𝑃(𝑘) for an 
arbitrary 𝑘 ≥ 𝑏*+, . (The smallest value of 𝑘 assumes all bases cases, but 
nothing else)
4. Inductive Step: Show 𝑃 𝑘 + 1 (i.e. get [P(b*!' ∧ ⋯∧ 𝑃 𝑘 ] → 𝑃(𝑘 + 1))
5. Conclude by saying 𝑃 𝑛 is true for all 𝑛 ≥ 𝑏*!' by the principle of 
induction. 



Stamp Collection, Done Wrong
Define 𝑃(𝑛) I can make 𝑛 cents of stamps with just 4 and 5 cent stamps.
We prove 𝑃(𝑛) is true for all 𝑛 ≥ 12 by induction on 𝑛.
Base Case:
12 cents can be made with three 4 cent stamps.
Inductive Hypothesis Suppose 𝑃(𝑘), 𝑘 ≥ 12.
Inductive Step:
We want to make 𝑘 + 1 cents of stamps. By IH we can make 𝑘 cents 
exactly with stamps. Replace one of the 4 cent stamps with a 5 cent
stamp.
𝑃(𝑛) holds for all 𝑛 by the principle of induction.



Stamp Collection, Done Wrong
What if the starting point doesn’t have any 4 cent stamps?
Like, say, 15 cents = 5+5+5.


