
Number Theory Proofs CSE 311 Autumn 20
Lecture 14

Warm up: Show that if 𝑎! if even then 𝑎 is even.



Bézout’s Theorem

We’re not going to prove this theorem…
But we’ll show you how to find 𝑠,𝑡 for any positive integers 𝑎, 𝑏.

If 𝒂 and 𝒃 are positive integers, then there exist integers 𝒔
and 𝒕 such that 

gcd(a,b)= 𝒔𝒂 + 𝒕𝒃

Bézout’s Theorem



Extended Euclidian Algorithm
Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

1 = 3 − 1 ⋅ 2
= 3 − 1 ⋅ 8 − 2 ⋅ 3
= −1 ⋅ 8 + 3 ⋅ 3
= −1 ⋅ 8 + 3 27 − 3 ⋅ 8
= 3 ⋅ 27 − 10 ⋅ 8
= 3 ⋅ 27 − 10(35 − 1 ⋅ 27)
= 13 ⋅ 27 − 10 ⋅ 35

gcd(27,35) = 13 ⋅ 27 + −10 ⋅ 35

When substituting 
back, you keep 
the larger of 𝑚, 𝑛
and the number 
you just 
substituted. 
Don’t simplify 
further! (or you 
lose the form you 
need)



So…what’s it good for?
Suppose I want to solve 7𝑥 ≡ 1 𝑚𝑜𝑑 𝑛

Just multiply both sides by "
#
…

Oh wait. We want a number to multiply by 7 to get 1.

If gcd(7,n) = 1
Then 𝑠 ⋅ 7 + 𝑡𝑛 = 1, so 7𝑠 − 1 = −𝑡𝑛 i.e. 𝑛|(7𝑠 − 1) so 7𝑠 ≡ 1 𝑚𝑜𝑑 𝑛 .
So the 𝑠 from Bézout’s Theorem is what we should multiply by!



Try it
Solve the equation 7𝑦 ≡ 3(𝑚𝑜𝑑 26)

What do we need to find? 
The multiplicative inverse of 7(mod 26)



Finding the inverse…
gcd(26,7) = gcd(7, 26%7) = gcd(7,5)

= gcd(5, 7%5)    = gcd(5,2)
= gcd(2, 5%2)    = gcd(2, 1)
= gcd(1, 2%1) = gcd(1,0)= 1.

26 = 3 ⋅ 7 + 5 ; 5 = 26 − 3 ⋅ 7
7 = 5 ⋅ 1 + 2 ;  2 = 7 − 5 ⋅ 1
5 = 2 ⋅ 2 + 1 ;  1 = 5 − 2 ⋅ 2

1 = 5 − 2 ⋅ 2
= 5 − 2(7 − 5 ⋅ 1)
= 3 ⋅ 5 − 2 ⋅ 7

= 3 ⋅ 26 − 3 ⋅ 7 − 2 ⋅ 7
3 ⋅ 26 − 11 ⋅ 7

−11 is a multiplicative inverse.
We’ll write it as 15, since we’re working mod 26.



Try it
Solve the equation 7𝑦 ≡ 3(𝑚𝑜𝑑 26)

What do we need to find? 
The multiplicative inverse of 7 (𝑚𝑜𝑑 26).

15 ⋅ 7 ⋅ 𝑦 ≡ 15 ⋅ 3(𝑚𝑜𝑑 26)
𝑦 ≡ 45(𝑚𝑜𝑑 26)
Or 𝑦 ≡ 19(𝑚𝑜𝑑 26)
So 26|19 − 𝑦, i.e. 26𝑘 = 19 − 𝑦 (for 𝑘 ∈ ℤ) i.e. 𝑦 = 19 − 26 ⋅ 𝑘 for any 𝑘 ∈ ℤ
So {… ,−7,19,45, …19 + 26𝑘,… }



Multiplicative Inverse
The number 𝑏 is a multiplicative inverse of 𝑎 (mod 𝑛) if 𝑏𝑎 ≡ 1(𝑚𝑜𝑑 𝑛).

If gcd(𝑎, 𝑛) = 1 then the multiplicative inverse exists.
If gcd(𝑎, 𝑛) ≠ 1 then the inverse does not exist.
Arithmetic (𝑚𝑜𝑑 𝑝) for 𝑝 prime is really nice for that reason.

Sometimes equivalences still have solutions when you don’t have 
inverses (but sometimes they don’t) – you’ll experiment with these facts 
on HW5.



Proof By Contradiction



Proof By Contradiction
Suppose the negation of your claim.
Show that you can derive False (i.e. (¬claim) → F )

If your proof is right, the implication is true. 
So ¬claim must be False.
So claim must be True!



Proof By Contradiction
Claim: 2 is irrational (i.e. not rational).
Proof:



Proof By Contradiction
Claim: 2 is irrational (i.e. not rational).
Proof:
Suppose for the sake of contradiction that 2 is rational.

But [] is a contradiction!

We don’t have a fixed target.

That can make this proof harder.



Proof By Contradiction
Claim: 2 is irrational (i.e. not rational).
Proof:
Suppose for the sake of contradiction that 2 is rational.
By definition of rational, there are integers s, 𝑡 such that t ≠ 0 and 2 = 𝑠/𝑡

Let 𝑝 = !
"#$ !,&

, q = '
"#$ !,&

Note that gcd 𝑝, 𝑞 = 1.

2 = (
)

That’s is a contradiction! We conclude 2 is irrational. 

If 𝑎* is even then 𝑎 is even. 



Proof By Contradiction
Claim: 2 is irrational (i.e. not rational).
Proof:
Suppose for the sake of contradiction that 2 is rational.
By definition of rational, there are integers s, 𝑡 such that t ≠ 0 and 2 = 𝑠/𝑡

Let 𝑝 = !
"#$ !,&
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2 = (
)
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2𝑞* = 𝑝* so 𝑝* is even. 

That’s is a contradiction! We conclude 2 is irrational. 

If 𝑎* is even then 𝑎 is even. 



Proof By Contradiction
Claim: 2 is irrational (i.e. not rational).
Proof:
Suppose for the sake of contradiction that 2 is rational.
By definition of rational, there are integers s, 𝑡 such that t ≠ 0 and 2 = 𝑠/𝑡

Let 𝑝 = !
"#$ !,&

, q = &
"#$ !,&

Note that gcd 𝑝, 𝑞 = 1.

2 = (
)

2 = (!

)!

2𝑞* = 𝑝* so 𝑝* is even. By the fact above, 𝑝 is even, i.e. 𝑝 = 2𝑘 for some integer 𝑘. Squaring both sides 𝑝* =
4𝑘*

Substituting into our original equation, we have: 2𝑞* = 4𝑘*, i.e. 𝑞* = 2𝑘*.
So 𝑞* is even. Applying the fact above again, 𝑞 is even. 
But if both 𝑝 and 𝑞 are even, gcd 𝑝, 𝑞 ≥ 2 . But we said gcd 𝑝, 𝑞 = 1
That’s is a contradiction! We conclude 2 is irrational. 

If 𝑎* is even then 𝑎 is even. 



Proof By Contradiction
How in the world did we know how to do that?

In real life…lots of attempts that didn’t work. 
Be very careful with proof by contradiction – without a clear target, you 
can easily end up in a loop of trying random things and getting 
nowhere. 



What’s the difference?
What’s the difference between proof by contrapositive and proof by 
contradiction?

Show 𝒑 → 𝒒 Proof by contradiction Proof by contrapositive

Starting Point ¬ 𝑝 → 𝑞 ≡ (𝑝 ∧ ¬𝑞) ¬𝑞
Target Something false ¬𝑝

Show 𝒑 Proof by contradiction Proof by contrapositive

Starting Point ¬𝑝 ---
Target Something false ---



Another Proof By Contradiction
Claim: There are infinitely many primes.
Proof:



Another Proof By Contradiction
Claim: There are infinitely many primes.
Proof:
Suppose for the sake of contradiction, that there are only finitely many 
primes. Call them 𝑝", 𝑝!, … , 𝑝$ .

But [] is a contradiction! So there must be infinitely many primes.



Another Proof By Contradiction
Claim: There are infinitely many primes.
Proof:
Suppose for the sake of contradiction, that there are only finitely many 
primes. Call them 𝑝!, 𝑝", … , 𝑝#.
Consider the number 𝑞 = 𝑝! ⋅ 𝑝" ⋅ ⋯ ⋅ 𝑝# + 1
Case 1: 𝑞 is prime

Case 2: 𝑞 is composite

But [] is a contradiction! So there must be infinitely many primes.



Another Proof By Contradiction
Claim: There are infinitely many primes.
Proof:
Suppose for the sake of contradiction, that there are only finitely many primes. Call 
them 𝑝C, 𝑝D, … , 𝑝E.
Consider the number 𝑞 = 𝑝C ⋅ 𝑝D ⋅ ⋯ ⋅ 𝑝E + 1
Case 1: 𝑞 is prime
𝑞 > 𝑝F for all 𝑖. But every prime was supposed to be on the list 𝑝C, … , 𝑝E. A 

contradiction!
Case 2: 𝑞 is composite

Some prime on the list (say 𝑝F) divides 𝑞. So 𝑞%𝑝F = 0. and 𝑝C𝑝D⋯𝑝E + 1 %𝑝F =1. But 𝑞 = 𝑝C𝑝D⋯𝑝E + 1 . That’s a contradiction!
In either case we have a contradiction! So there must be infinitely many primes.



Induction CSE 311 Autumn 20
Lecture 14



Why does recursion work?
//Assume i is a nonnegative integer
//returns 2^i.
public int CalculatesTwoToTheI(int i){

if(i == 0)
return 1;

else
return 2*CaclulatesTwoToTheI(i-1);

}

Why does CalculatesTwoToTheI(4) calculate 2^4?
Convince the other people in your room 

Fill out the poll everywhere for 
Activity Credit!

Go to pollev.com/cse311 and 
login with your UW identity
Or text cse311 to 22333



Why does recursion work?
Something like this:

Well, as long as CalculatesTwoToTheI(3) = 8, we get 16…
Which happens as long as CalculatesTwoToTheI(2) = 4
Which happens as long as CalculatesTwoToTheI(1) = 2
Which happens as long as CalculatesTwoToTheI(0) = 1
And it is! Because that’s what the base case says.



Why does recursion work?
There’s really only two cases.

CalculatesTwoToTheI(0) = 1 (which it should!)

And that means CalculatesTwoToTheI(1) = 2, (like it should)
And that means CalculatesTwoToTheI(2) = 4, (like it should)
And that means CalculatesTwoToTheI(3) = 8, (like it should)
And that means CalculatesTwoToTheI(4) = 16, (like it should)

The Base Case is Correct

IF the recursive call we make is correct 
THEN our value is correct.



Why does recursion work?
The code has two big cases,
So our proof had two big cases

“The base case of the code produces the correct output”
“IF the calls we rely on produce the correct output THEN the current call 
produces the right output” 



A bit more formally…
“The base case of the code produces the correct output”
“IF the calls we rely on produce the correct output THEN the current call 
produces the right output” 
Let 𝑃(𝑖) be “CalculatesTwoToTheI(i)” returns 2$.
How do we know 𝑃(4)?
𝑃(0) is true.
And 𝑃 0 → 𝑃(1), so 𝑃 1 .
And 𝑃 1 → 𝑃(2), so 𝑃 2 .
And 𝑃 2 → 𝑃(3), so 𝑃 3 .
And 𝑃 3 → 𝑃(4), so 𝑃 4 .



A bit more formally…
This works alright for 𝑃(4).

What about 𝑃 1000 ? 𝑃(1000000000)? 
At this point, we’d need to show that implication 𝑃 𝑘 → 𝑃(𝑘 + 1) for A 
BUNCH of values of 𝑘. 
But the code is the same each time. 
And so was the argument!

We should instead show ∀𝑘[𝑃 𝑘 → 𝑃 𝑘 + 1 ].



Induction
Your new favorite proof technique!
How do we show ∀𝑛, 𝑃(𝑛)?

Show 𝑃(0)
Show ∀𝑘(𝑃 𝑘 → 𝑃 𝑘 + 1 )



Induction

Let 𝑃(𝑖) be “CalculatesTwoToTheI(i)” returns 2% .
Note that if the input 𝑖 is 0, then the if-statement evaluates to true, and 
1 = 2^0 is returned, so 𝑃(0) is true.
Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0.

So 𝑃(𝑘 + 1) holds.
Therefore 𝑃(𝑛) holds for all 𝑛 ≥ 0 by the principle of induction.

//Assume i is a nonnegative integer
public int CalculatesTwoToTheI(int i){

if(i == 0)
return 1;

else
return 2*CaclulatesTwoToTheI(i-1);

}



Making Induction Proofs Pretty

Let 𝑃(𝑖) be “CalculatesTwoToTheI(i)” returns 2% .
Base Case (𝑖 = 0) Note that if the input 𝑖 is 0, then the if-statement 
evaluates to true, and 1 = 2^0 is returned, so 𝑃(0) is true.
Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0.
Inductive Step: Since 𝑘 ≥ 0, 𝑘 ≥ 1, so the code goes to the recursive case. 
We will return 2 ⋅ CalculatesTwoToTheI(k). By Inductive Hypothesis, 
CalculatesTwoToTheI(k)= 2$ . Thus we return 2 ⋅ 2$ = 2$&".

So 𝑃(𝑘 + 1) holds.
Therefore 𝑃(𝑛) holds for all 𝑛 ≥ 0 by the principle of induction.



Making Induction Proofs Pretty
All of our induction proofs will come in 5 easy(?) steps!
1. Define 𝑃(𝑛). State that your proof is by induction on 𝑛.
2. Show 𝑃(0) i.e. show the base case
3. Suppose 𝑃(𝑘) for an arbitrary 𝑘. 
4. Show 𝑃 𝑘 + 1 (i.e. get 𝑃 𝑘 → 𝑃(𝑘 + 1))
5. Conclude by saying 𝑃 𝑛 is true for all 𝑛 by induction. 



Some Other Notes
Always state where you use the inductive hypothesis when you’re using 
it in the inductive step.
It’s usually the key step, and the reader really needs to focus on it.

Be careful about what values you’re assuming the Inductive Hypothesis 
for – the smallest possible value of 𝑘 should assume the base case but 
nothing more. 



The Principle of Induction (formally)

Informally: if you knock over one domino, and every domino knocks 
over the next one, then all your dominoes fell over.

𝑃 0 ; ∀𝑘(𝑃 𝑘 → 𝑃 𝑘 + 1 )

∴ ∀𝑛(𝑃 𝑛 )
Principle of 
Induction



More Induction
Induction doesn’t only work for code!
Show that ∑%'() 2% = 1 + 2 + 4 +⋯+ 2) = 2)&" − 1.



More Induction
Induction doesn’t only work for code!
Show that ∑%'() 2% = 1 + 2 + 4 +⋯+ 2) = 2)&" − 1.
Let 𝑃 𝑛 =“∑%'() 2% = 2)&" − 1.”
We show 𝑃(𝑛) holds for all 𝑛 by induction on 𝑛.
Base Case ( )
Inductive Hypothesis:
Inductive Step: 

𝑃(𝑛) holds for all 𝑛 ≥ 0 by the principle of induction.



More Induction
Induction doesn’t only work for code!
Show that ∑%'() 2% = 1 + 2 + 4 +⋯+ 2) = 2)&" − 1.
Let 𝑃 𝑛 =“∑%'() 2% = 2)&" − 1.”
We show 𝑃(𝑛) holds for all 𝑛 by induction on 𝑛.
Base Case (𝑛 = 0)∑%'(( 2% = 1 = 2 − 1 = 2(&" − 1.
Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0.
Inductive Step: We show 𝑃(𝑘 + 1). Consider the summation∑%'($&" 2% =
2*&" + ∑%'($ 2% = 2$&" + 2$&" − 1 , where the last step is by IH.
Simplifying, we get: ∑%'($&" 2% = 2$&" + 2$&" − 1 = 2 ⋅ 2$&" − 1 =
2 $&" &" − 1.
𝑃(𝑛) holds for all 𝑛 ≥ 0 by the principle of induction.


