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Try using the contrapositive yourselves!
Show for any sets 𝐴, 𝐵, 𝐶: if 𝐴 ⊈ (𝐵 ∪ 𝐶) then 𝐴 ⊈ 𝐶.

1. What do the terms in the statement mean?
2. What does the statement as a whole say?
3. Where do you start?
4. What’s your target?
5. Finish the proof J

Fill out the poll everywhere for 
Activity Credit!

Go to pollev.com/cse311 and login 
with your UW identity

Or text cse311 to 37607



Try it yourselves!
Show for any sets 𝐴, 𝐵, 𝐶: if 𝐴 ⊈ (𝐵 ∪ 𝐶) then 𝐴 ⊈ 𝐶.

Proof:
We argue by contrapositive, 
Let 𝐴, 𝐵, 𝐶 be arbitrary sets, and suppose 𝐴 ⊆ 𝐶.
Let 𝑥 be an arbitrary element of 𝐴. By definition of subset, 𝑥 ∈ 𝐶. By 
definition of union, we also have 𝑥 ∈ 𝐵 ∪ 𝐶. Since 𝑥 was an arbitrary 
element of 𝐴, we have 𝐴 ⊆ 𝐵 ∪ 𝐶 .
Since 𝐴, 𝐵, 𝐶 were arbitrary, we have: if 𝐴 ⊈ (𝐵 ∪ 𝐶) then 𝐴 ⊈ 𝐶.



Divisors and Primes



Inverses 

Given a function 𝑓: 𝑁 → 𝑁,
if 𝒙 ≠ 𝒚 implies 𝒇 𝒙 ≠ 𝒇 𝒚
then define the inverse of 𝒇, called 𝒇!𝟏 , 
to be 𝒇!𝟏 𝒚 = 𝒙 for 𝒇(𝒙) = 𝒚. 

Inverse

What is 𝑓!"(𝑓(x))?
What is 𝑓(𝑓!"(x))?Why is there one unique such 𝑓!"?



Inverses of operations

Fix two integers 𝑖, 𝑛 ≥ 0.
We call j an additive inverse of i mod n if 𝒊 + 𝒋 ≡ 𝟎 (𝒎𝒐𝒅 𝒏)
We call j a multiplicative inverse of i mod n if 𝒊 ⋅ 𝒋 ≡ 𝟏 (𝒎𝒐𝒅 𝒏)

Inverse (modular arithmetic)



Primes and FTA

An integer 𝑝 > 1 is prime iff its only positive divisors are 𝟏
and 𝒑. Otherwise it is “composite”

Prime

Every positive integer greater than 1 has a unique 
prime factorization.

Fundamental Theorem of Arithmetic



GCD and LCM

The Greatest Common Divisor of 𝑎 and 𝒃 (gcd(a,b)) is the 
largest integer 𝒄 such that 𝒄|𝒂 and 𝒄|𝒃

Greatest Common Divisor

The Least Common Multiple of 𝑎 and 𝒃 (lcm(a,b)) is the 
smallest positive integer 𝒄 such that 𝒂|𝒄 and 𝒃|𝒄.

Least Common Multiple



Try a few values…
gcd(100,125)
gcd(17,49)
gcd(17,34)
gcd(13,0)

lcm(7,11)
lcm(6,10)



public int Mystery(int m, int n){
if(m<n){

int temp = m;
m=n;
n=temp;

}

while(n != 0) {
int rem = m % n;
m=n;
n=rem;

}
return m;

} 



How do you calculate a gcd?
You could:
Find the prime factorization of each
Take all the common ones. E.g.
gcd(24,20)=gcd(2# ⋅ 3, 2$ ⋅ 5) = 2^{min(2,3)} = 2^2 = 4.
(lcm has a similar algorithm – take the maximum number of copies of 
everything)

But that’s….really expensive. Mystery from a few slides ago finds gcd.



Two useful facts

Tomorrow’s lecture we’ll prove this fact.  For now: just trust it. 

If 𝒂, 𝒃 are positive integers, then gcd(𝒂, 𝒃) = gcd(𝒃, 𝒂%𝒃)

gcd Fact 1

Let 𝒂 be a positive integer: gcd(𝒂, 𝟎) = 𝐚

gcd Fact 2

Does 𝑎|𝑎 and 𝑎|0? Yes 𝑎 ⋅ 1 = 𝑎; 𝑎 ⋅ 0 = 𝑎.
Does anything greater than 𝑎 divide 𝑎?



public int Mystery(int m, int n){
if(m<n){

int temp = m;
m=n;
n=temp;

}

while(n != 0) {
int rem = m % n;
m=n;
n=rem;

}
return m;

} 



Euclid’s Algorithm

gcd(660,126)  

while(n != 0) {
int rem = m % n;
m=n;
n=rem;

}



Euclid’s Algorithm

gcd(660,126)  

while(n != 0) {
int rem = m % n;
m=n;
n=rem;

}

= gcd(126, 660 mod 126)   = gcd(126, 30)
= gcd(30, 126 mod 30) = gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
= 6

Tableau form
660 = 5 ⋅ 126 + 30
126 = 4 ⋅ 30 + 6
30 = 5 ⋅ 6 + 0

Starting Numbers

Final 
answer



Bézout’s Theorem

We’re not going to prove this theorem…
But we’ll show you how to find 𝑠,𝑡 for any positive integers 𝑎, 𝑏.

If 𝒂 and 𝒃 are positive integers, then there exist integers 𝒔
and 𝒕 such that 

gcd(a,b)= 𝒔𝒂 + 𝒕𝒃

Bézout’s Theorem



Extended Euclidian Algorithm
Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

gcd(35,27)



Extended Euclidian Algorithm
Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

gcd(35,27)  = gcd(27, 35%27) = gcd(27,8)
= gcd(8, 27%8)     = gcd(8, 3)
= gcd(3, 8%3)       = gcd(3, 2)
= gcd(2, 3%2)       = gcd(2,1)
= gcd(1, 2%1)        = gcd(1,0)

35 = 1 ⋅ 27 + 8
27 = 3 ⋅ 8 + 3
8 = 2 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1



Extended Euclidian Algorithm
Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward 

35 = 1 ⋅ 27 + 8
27 = 3 ⋅ 8 + 3
8 = 2 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1



Extended Euclidian Algorithm
Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

35 = 1 ⋅ 27 + 8
27 = 3 ⋅ 8 + 3
8 = 2 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2



Extended Euclidian Algorithm
Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2



Extended Euclidian Algorithm
Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

1 = 3 − 1 ⋅ 2
= 3 − 1 ⋅ 8 − 2 ⋅ 3
= −1 ⋅ 8 + 2 ⋅ 3



Extended Euclidian Algorithm
Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

1 = 3 − 1 ⋅ 2
= 3 − 1 ⋅ 8 − 2 ⋅ 3
= −1 ⋅ 8 + 3 ⋅ 3
= −1 ⋅ 8 + 3 27 − 3 ⋅ 8
= 3 ⋅ 27 − 10 ⋅ 8
= 3 ⋅ 27 − 10(35 − 1 ⋅ 27)
= 13 ⋅ 27 − 10 ⋅ 35

gcd(27,35) = 13 ⋅ 27 + −10 ⋅ 35

When substituting 
back, you keep 
the larger of 𝑚, 𝑛
and the number 
you just 
substituted. 
Don’t simplify 
further! (or you 
lose the form you 
need)



So…what’s it good for?
Suppose I want to solve 7𝑥 ≡ 1 𝑚𝑜𝑑 𝑛

Just multiply both sides by %
&
…

Oh wait. We want a number to multiply by 7 to get 1.

If the gcd(7,n) = 1
Then 𝑠 ⋅ 7 + 𝑡𝑛 = 1, so 7𝑠 − 1 = −𝑡𝑛 i.e. 𝑛|(7𝑠 − 1) so 7𝑠 ≡ 1 𝑚𝑜𝑑 𝑛 .
So the 𝑠 from Bézout’s Theorem is what we should multiply by!



Try it
Solve the equation 7𝑦 ≡ 3(𝑚𝑜𝑑 26)

What do we need to find? 
The multiplicative inverse of 7(mod 26)



Multiplicative Inverse
The number 𝑏 is a multiplicative inverse of 𝑎 (mod 𝑛) if 𝑏𝑎 ≡ 1(𝑚𝑜𝑑 𝑛).

If gcd(𝑎, 𝑛) = 1 then the multiplicative inverse exists.
If gcd(𝑎, 𝑛) ≠ 1 then the inverse does not exist.
Arithmetic (𝑚𝑜𝑑 𝑝) for 𝑝 prime is really nice for that reason.

Sometimes equivalences still have solutions when you don’t have 
inverses (but sometimes they don’t)



Finding the inverse…
gcd(26,7) = gcd(7, 26%7) = gcd(7,5)

= gcd(5, 7%5)    = gcd(5,2)
= gcd(2, 5%2)    = gcd(2, 1)
= gcd(1, 2%1) = gcd(1,0)= 1.

26 = 3 ⋅ 7 + 5 ; 5 = 26 − 3 ⋅ 7
7 = 5 ⋅ 1 + 2 ;  2 = 7 − 5 ⋅ 1
5 = 2 ⋅ 2 + 1 ;  1 = 5 − 2 ⋅ 2

1 = 5 − 2 ⋅ 2
= 5 − 2(7 − 5 ⋅ 1)
= 3 ⋅ 5 − 2 ⋅ 7

= 3 ⋅ 26 − 3 ⋅ 7 − 2 ⋅ 7
3 ⋅ 26 − 11 ⋅ 7

−11 is a multiplicative inverse.
We’ll write it as 15, since we’re working mod 26.



Try it
Solve the equation 7𝑦 ≡ 3(𝑚𝑜𝑑 26)

What do we need to find? 
The multiplicative inverse of 7 (𝑚𝑜𝑑 26).

15 ⋅ 7 ⋅ 𝑦 ≡ 15 ⋅ 3(𝑚𝑜𝑑 26)
𝑦 ≡ 45(𝑚𝑜𝑑 26)
Or 𝑦 ≡ 19(𝑚𝑜𝑑 26)
So 26|19 − 𝑦, i.e. 26𝑘 = 19 − 𝑦 (for 𝑘 ∈ ℤ) i.e. 𝑦 = 19 − 26 ⋅ 𝑘 for any 𝑘 ∈ ℤ
So {… ,−7,19,45, …19 + 26𝑘,… }



And now, for some proofs!



GCD fact
If 𝑎 and 𝑏 are positive integers, then gcd(a,b) = gcd(b, a % b)

How do you show two gcds are equal?
Call 𝑎 = gcd 𝑤, 𝑥 , 𝑏 = gcd(𝑦, 𝑧)

If 𝑏|𝑤 and 𝑏|𝑥 then 𝑏 is a common divisor of 𝑤, 𝑥 so 𝑏 ≤ 𝑎
If 𝑎|𝑦 and 𝑎|𝑧 then 𝑎 is a common divisor of 𝑦, 𝑧, so 𝑎 ≤ 𝑏
If 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎 then 𝑎 = 𝑏



gcd(a,b) = gcd(b, a % b)
Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).
We show that 𝑦 is a common divisor of 𝑎 and 𝑏.
By definition of gcd, 𝑦|𝑏 and 𝑦|(𝑎%𝑏). So it is enough to show that 𝑦|𝑎.
Applying the definition of divides we get 𝑏 = 𝑦𝑘 for an integer 𝑘, and 
𝑎%𝑏 = 𝑦𝑗 for an integer 𝑗.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞.
Plugging in both of our other equations:
𝑎 = 𝑞𝑦𝑘 + 𝑦𝑗 = 𝑦 𝑞𝑘 + 𝑗 . Since 𝑞, 𝑘, and 𝑗 are integers, 𝑦|𝑎. Thus 𝑦 is a 
common divisor of 𝑎, 𝑏 and thus 𝑦 ≤ 𝑥.



gcd(a,b) = gcd(b, a % b)
Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).
We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.
By definition of gcd, x|𝑏 and 𝑥|𝑎. So it is enough to show that x|(𝑎%𝑏).
Applying the definition of divides we get 𝑏 = 𝑥𝑘′ for an integer 𝑘′, and 
a = 𝑥𝑗′ for an integer 𝑗′.
By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞
Plugging in both of our other equations:
𝑥𝑗' = 𝑞𝑥𝑘' + 𝑎%𝑏. Solving for 𝑎%𝑏, we have 𝑎%𝑏 = 𝑥𝑗' − 𝑞𝑥𝑘' =
𝑥 𝑗' − 𝑞𝑘' . So 𝑥|(𝑎%𝑏). Thus 𝑥 is a common divisor of 𝑏, 𝑎%𝑏 and thus 
𝑥 ≤ 𝑦.



gcd(a,b) = gcd(b, a % b)
Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).
We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

We have shown 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥. 
Thus 𝑥 = 𝑦, and gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎%𝑏 .


