

Announce rents:

- Dan't delete your ed posts!
- Handling a few collaboration issues, graded HW3 ant later today
- HW4 due +HW5 of thurs.
- Please list your collaborators on HW.
GCD and the CSE 311 Fall 2020 Euclidian Algorithm Lecture 13

Try using the contrapositive yourselves!

 Show for any sets A, B, C : if $A \nsubseteq(B \cup C)$ then $A \nsubseteq C$.1. What do the terms in the statement mean?
2. What does the statement as a whole say?
3. Where do you start?
4. What's your target?
5. Finish the proof $:$

Fill out the poll everywhere for Activity Credit!

Go to pollev.com/cse311 and login with your UW identity Or text cse 311 to 37607

Try it yourselves!

Show for any sets A, B, C : if $A \nsubseteq(B \cup C)$ then $A \nsubseteq C$.

Proof:

We argue by contrapositive,
Let A, B, C be arbitrary sets, and suppose $A \subseteq C$.
Let x be an arbitrary element of A. By definition of subset, $x \in C$. By definition of union, we also have $x \in B \cup C$. Since x was an arbitrary element of A, we have $A \subseteq(B \cup C)$.
Since A, B, C were arbitrary, we have: if $A \nsubseteq(B \cup C)$ then $A \nsubseteq C$.

Divisors and Primes

Inverses

Inverse

Given a function $f: N \rightarrow N_{\text {, }}$ if $x \neq y$ implies $f(x) \neq f(y)$ then define the inverse of f, called f^{-1}, to be $f^{-1}(y)=x$ for $f(x)=y$.

Why is there one unique such f^{-1} ?
What is $f^{-1}(f(x))$?
What is $f\left(f^{-1}(\mathrm{x})\right)$?

Inverses of operations

Inverse (modular arithmetic)
Fix two integers $i, n \geq 0$.
We call j an additive inverse of $i \bmod n$ if $(i+j) \equiv 0(\bmod n)$ We call j a multiplicative inverse of $i \bmod n$ if $(i \cdot j) \equiv 1(\bmod n)$

$$
\begin{gathered}
x \cdot i, j \equiv x(\bmod n) \\
i \cdot j \equiv I(\bmod n)
\end{gathered}
$$

$$
\begin{aligned}
& x+i+j \equiv x(\bmod h) \\
& i+j \equiv O(\bmod n)
\end{aligned}
$$

Primes and FTA

Prime
 \square

An integer $p>1$ is prime iff its only positive divisors are 1 and p. Otherwise it is "composite"

Fundamental Theorem of Arithmetic
Every positive integer greater than 1 has a unique prime factorization.

GCD and LCM

Greatest Common Divisor

The Greatest Common Divisor of a and b integers $(\operatorname{gcd}(\mathrm{a}, \mathrm{b}))$ is the largest integer c such that $c \mid a$ and $c \mid b$

$$
\text { Factor of } a+b
$$

Least Common Multiple

The Least Common Multiple of a and $b(\operatorname{lcm}(\mathrm{a}, \mathrm{b}))$ is the smallest positive integer c such that $a \mid c$ and $b \mid c$.

$$
+a \text { is a factor of } c
$$

Try a few values... $\operatorname{gcd}(a, 0)=a \rightarrow 0$ deal w. sep.

$$
\begin{aligned}
& \operatorname{gcd}(100,125)=25 \quad \begin{array}{l}
25 \times 4=100 \\
25 \times 5=125
\end{array} \\
& \operatorname{gcd}(17,49)=1 \\
& \operatorname{pcd}(17,34)=17 \\
& \operatorname{gcd}(13,0)=13
\end{aligned}
$$

$$
\begin{array}{ll}
\hat{\operatorname{Icm}(7,11)=77} & \begin{array}{c}
\left.\operatorname{lcm}\left(p_{1}\right) p_{2}\right)=p_{1} \times p_{2} \\
\text { if primes }
\end{array} \\
\operatorname{Icm}(6,10)=30 & \operatorname{cm}(a, b) \\
3 \hat{\wedge} \hat{5 \times 2} & \text { take product } \\
&
\end{array}
$$ of unique primes

t one Copy of pripaes they share

```
public int Mystery(int m, int n){
    if(m<n) {
        int temp = m;
        m=n;
        n=temp;
    }
    while(n != 0) {
        int rem =m % n; ~ m=n\cdotq+r
        m=n;
        n=rem;
    }
    return m;
}
```


How do you calculate a gcd?

You could:
Find the prime factorization of each
Take all the common ones. E.g.
$\operatorname{gcd}(24,20)=\operatorname{gcd}\left(2^{3} \cdot 3,2^{2} \cdot 5\right)=2^{\wedge}\{\min (2,3)\}=2^{\wedge} 2=4$.
(lcm has a similar algorithm - take the maximum number of copies of everything)

But that's....really expensive. Mystery from a few slides ago finds gcd.

Two useful facts

gcd Fact 1

If a, b are positive integers, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$
Tomorkow's lecture we'll prove this fact. For now: just trust it.

gcd Fact 2

Let a be a positive integer: $\operatorname{gcd}(a, 0)=a$
Does $a \mid a$ and $a \mid 0$? Yes $a \cdot 1=a ; a \cdot 0=a$. Does anything greater than a divide a ?

```
public int Mystery(int m, int n){
    if (m<n) {
        int temp = m;
        m=n;
        n=temp;
    }
    while(n != 0) {
        int rem = m % n;
        m=n;
        n=rem;
    }
    return m;
}
```

Euclid's Algorithm

$$
\begin{aligned}
\text { while }(\mathrm{n}!=0) & \text { \{ } \\
& \text { int rem }=m \% n ; \\
& m=n ; \\
& n=r e m ;
\end{aligned}
$$

$\operatorname{gcd}(660,126)$

Euclid's Algorithm

while(n ! = 0) int rem $=m$ \% n; $\mathrm{m}=\mathrm{n}$;
n=rem;

$$
\begin{array}{rlrl}
\operatorname{gcd}(660,126) & =\operatorname{gcd}(126, \sqrt{660 \bmod 126)}) & =\operatorname{gcd}(126,30) \\
& =\operatorname{gcd}(30,126 \bmod 30) & =\operatorname{gcd}(30,6) \\
& =\operatorname{gcd}(6,30,3 \bmod 6) & =\underline{\operatorname{gcd}(6,0)} \\
& =6
\end{array}
$$

Tableau form

\rightarrow| $\rightarrow 660$ | $=5 \cdot 126+30$ |
| ---: | :--- |
| 126 | $=\overline{4} \cdot \overrightarrow{30}+6$ |
| 30 | $=5 \cdot \quad 6+0$ |

Bézout's Theorem

Bézout's Theorem
 If a and b are positive integers, then there exist integers s and t such that $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=s a+t b$

We're not going to prove this theorem...
But we'll show you how to find s, t for any positive integers a, b.

Extended Euclidian Algorithm
Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

$$
\operatorname{gcd}(35,27)=\operatorname{gcd}(27,3 \operatorname{smod} 7)=\operatorname{gd}(27,8)
$$

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

$$
\begin{aligned}
& \operatorname{gcd}(35,27)=\operatorname{gcd}(27,35 \% 27)=\operatorname{gcd}(27,8) \\
& =\operatorname{gcd}(8,27 \% 8)=\operatorname{gcd}(8,3) \\
& =\operatorname{gcd}(3,8 \% 3) \quad=\operatorname{gcd}(3,2) \\
& =\operatorname{gcd}(2,3 \% 2) \quad=\operatorname{gcd}(2,1) \\
& =\operatorname{gcd}(1,2 \% 1)=\operatorname{gcd}(1,0) \\
& \begin{array}{l}
\frac{35}{27}=1 \cdot \frac{27+8}{8^{\circledR}+3} \\
\frac{27}{8}=2 \cdot 3+2 \\
3=1 \cdot 2+1
\end{array}
\end{aligned}
$$

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

$$
\begin{aligned}
& 35=1 \cdot 27+8 \\
& 27=3 \cdot 8+3 \\
& 8=2 \cdot 3+2 \\
& 3=1 \cdot 2+1 \\
& \hline
\end{aligned}
$$

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

$35=1 \cdot 27+8$
$27=3 \cdot 8+\underline{3}$
$8=2 \cdot 3+\underline{2}$
$3=1 \cdot$

$$
\begin{array}{|l|}
\hline 8=35-1 \cdot 27 \\
3=27-3 \cdot 8 \\
2=8-2 \cdot 3 \\
1=3-1 \cdot 2 \\
\hline
\end{array}
$$

Extended Euclidian Algorithm

Step 1 compute $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$; keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

$$
\begin{aligned}
& 8=35-1 \cdot 27 \\
& 3=27-3 \cdot 8 \\
& 2=8-2 \cdot 3 \\
& 1=3-1 \cdot 2
\end{aligned}
$$

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

$$
\begin{aligned}
\frac{8}{3} & =35-1 \cdot 27 \\
\frac{3}{2} & =27-3 \cdot 8 \\
1 & =8-2 \cdot 3 \\
& =3-1 \cdot(2)
\end{aligned} .
$$

$$
\begin{aligned}
& \underline{1}=3-1 \cdot 2 \\
& =3-1 \cdot(8-2 \cdot 3) \\
& =-1 \cdot 8+2 \cdot 3
\end{aligned}
$$

Extended Euclidian Algorithm

Step 1 compute $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$; keep tableau information.
Step 2 solve all equations for the remainder.
st
Step 3 substitute backward
$13 \times 27-10 \times 35=1$

$$
\operatorname{gcd}(27,35)=13 \cdot 27+(-10) \cdot 35
$$

When substituting back, you keep the larger of m, n and the number you just
substituted. Don't simplify further! (or you lose the form you need)

$$
\begin{aligned}
& \sim_{1}=3-1 \cdot 2 \\
& \sim=3-1 \cdot(8-2 \cdot 3) \\
& =-1 \cdot 8+3 \cdot 3 \\
& =-1 \cdot 8+3(27-3 \cdot 8) \\
& =3 \cdot 27-10 \cdot 8 \\
& =3 \cdot 27-10(35-1 \cdot 27) \\
& =13 \cdot 27-10 \cdot 35
\end{aligned}
$$

So...what's it good for?

Suppose I want to solve $7 x \equiv 1(\bmod n)$

Just multiply both sides by $\frac{1}{7} \ldots$
Oh wait. We want a number to multiply by 7 to get 1 .

If the $\operatorname{gcd}(7, \mathrm{n})=1$
Then $s \cdot 7+t n=1$, so $7 s-1=-t n$ i.e. $n \mid(7 s-1)$ so $7 s \equiv 1(\bmod n)$.
So the s from Bézout's Theorem is what we should multiply by!

Try it
Solve the equation $7 y \equiv 3(\bmod 26)$

What do we need to find?
The multiplicative inverse of $7(\bmod 26)$

Multiplicative Inverse

The number b is a multiplicative inverse of $a(\bmod n)$ if $b a \equiv 1(\bmod n)$.

If $\operatorname{gcd}(a, n)=1$ then the multiplicative inverse exists.
If $\operatorname{gcd}(a, n) \neq 1$ then the inverse does not exist.
Arithmetic $(\bmod p)$ for p prime is really nice for that reason.

Sometimes equivalences still have solutions when you don't have inverses (but sometimes they don't)

Finding the inverse...

$$
\begin{aligned}
\operatorname{gcd}(26,7) & =\operatorname{gcd}(7,26 \% 7)=\operatorname{gcd}(7,5) \\
& =\operatorname{gcd}(5,7 \% 5)=\operatorname{gcd}(5,2) \\
& =\operatorname{gcd}(2,5 \% 2)=\operatorname{gcd}(2,1) \\
& =\operatorname{gcd}(1,2 \% 1)=\operatorname{gcd}(1,0)=1 .
\end{aligned}
$$

$$
\begin{gathered}
1=5-2 \cdot 2 \\
=5-2(7-5 \cdot 1) \\
=3 \cdot 5-2 \cdot 7 \\
=3 \cdot(26-3 \cdot 7)-2 \cdot 7 \\
3 \cdot 26-11 \cdot 7
\end{gathered}
$$

-11 is a multiplicative inverse.
We'll write it as 15 , since we're working mod 26 .

$$
\begin{aligned}
& 26=3 \cdot 7+5 ; 5=26-3 \cdot 7 \\
& 7=5 \cdot 1+2 ; 2=7-5 \cdot 1 \\
& 5=2 \cdot 2+1 ; 1=5-2 \cdot 2
\end{aligned}
$$

Try it

Solve the equation $7 y \equiv 3(\bmod 26)$

What do we need to find?
The multiplicative inverse of $7(\bmod 26)$.
$15 \cdot 7 \cdot y \equiv 15 \cdot 3(\bmod 26)$
$y \equiv 45(\bmod 26)$
Or $y \equiv 19(\bmod 26)$
So $26 \mid 19-y$, i.e. $26 k=19-y$ (for $k \in \mathbb{Z}$) i.e. $y=19-26 \cdot k$ for any $k \in \mathbb{Z}$ So $\{\ldots,-7,19,45, \ldots 19+26 k, \ldots\}$

And now, for some proofs!

GCD fact

If a and b are positive integers, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$

How do you show two gcds are equal?
Call $a=\operatorname{gcd}(w, x), b=\operatorname{gcd}(y, z)$

If $b \mid w$ and $b \mid x$ then b is a common divisor of w, x so $b \leq a$ If $a \mid y$ and $a \mid z$ then a is a common divisor of y, z, so $a \leq b$ If $a \leq b$ and $b \leq a$ then $a=b$

$\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$

Let $\mathrm{x}=\operatorname{gcd}(a, b)$ and $y=\operatorname{gcd}(b, a \% b)$.
We show that y is a common divisor of a and b.
By definition of $\operatorname{gcd}, y \mid b$ and $y \mid(a \% b)$. So it is enough to show that $y \mid a$.
Applying the definition of divides we get $b=y k$ for an integer k, and ($a \% b$) $=y j$ for an integer j.
By definition of mod, $a \% b$ is $a=q b+(a \% b)$ for an integer q.
Plugging in both of our other equations:
$a=q y k+y j=y(q k+j)$. Since q, k, and j are integers, $y \mid a$. Thus y is a common divisor of a, b and thus $y \leq x$.

$\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$

Let $\mathrm{x}=\operatorname{gcd}(a, b)$ and $y=\operatorname{gcd}(b, a \% b)$.
We show that x is a common divisor of b and $\mathrm{a} \% b$.
By definition of gcd, $\mathrm{x} \mid b$ and $x \mid a$. So it is enough to show that $\mathrm{x} \mid(a \% b)$.
Applying the definition of divides we get $b=x k^{\prime}$ for an integer k^{\prime}, and $\mathrm{a}=x j^{\prime}$ for an integer j^{\prime}.
By definition of mod, $a \% b$ is $a=q b+(a \% b)$ for an integer q
Plugging in both of our other equations:
$x j^{\prime}=q x k^{\prime}+a \% b$. Solving for $a \% b$, we have $a \% b=x j^{\prime}-q x k^{\prime}=$ $x\left(j^{\prime}-q k^{\prime}\right)$. So $x \mid(a \% b)$. Thus x is a common divisor of $b, a \% b$ and thus $x \leq y$.

$\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$

Let $\mathrm{x}=\operatorname{gcd}(a, b)$ and $y=\operatorname{gcd}(b, a \% b)$.
We show that x is a common divisor of b and $\mathrm{a} \% b$.

We have shown $x \leq y$ and $y \leq x$.
Thus $x=y$, and $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$.

