$a \% n=b \% n$ if and only if $a \equiv b(\bmod n)$

Show the forward direction:
If $a \% n=b \% n$ then $a \equiv b(\bmod n)$.
This proof is a bit different than the other direction.
Remember to work from top and bottom!!

Fill out the poll everywhere for Activity Credit!
Go to pollev.com/cse311 and login with your UW identity Or text cse311 to 22333

Equivalence in modular arithmetic

Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and $n>0$.
We say $a \equiv b(\bmod n)$ if and only if $n \mid(b-a)$
The Division Theorem
For every $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d>\mathbf{0}$
There exist unique integers q, r with $0 \leq r<d$ Such that $a=d q+r$

