Claim: for all $a, b, c, n \in \mathbb{Z}, n \geq 0: a \equiv b(\bmod n) \rightarrow a+c \equiv b+c(\bmod n)$

Before we start, we must know:

1. What every word in the statement means.
2. What the statement as a whole means.
3. Where to start.
4. What your target is.

Divides

For integers x, y we say $x \mid y$ (" x divides y ") iff there is an integer z such that $x z=y$.

Equivalence in modular arithmetic
Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and $n>0$.
We say $a \equiv b(\bmod n)$ if and only if $n \mid(b-a)$

