
Warm up
Try to prove 𝑎 → 𝑏 ≡ ¬𝑏 → ¬𝑎 if you didn’t get all the way through it
last time.

Digital Logic CSE 311 Autumn 2020
Lecture 4

Contrapositive
𝑎 → 𝑏 ≡ ¬𝑎 ∨ 𝑏

≡ 𝑏 ∨ ¬𝑎
≡ ¬¬𝑏 ∨ ¬𝑎
≡ ¬𝑏 → ¬𝑎

Law of Implication
Commutativity
Double Negation
Law of Implication

All of our rules deal with ORs and ANDs, let’s switch the implication
to just use AND/NOT/OR.
And do the same with our target

It’s ok to work from both ends. In fact it’s a very common
strategy!
Now how do we get the top to look like the bottom?

Just a few more rules and we’re done!

Announcements
Everyone should have access to gradescope (you should have gotten a
sign-up email if you don’t already have an account).

If you can’t access the course on gradescope, let us know as soon as
possible.

Turning in an assignment to gradescope often takes about 15 minutes.
You have to tell gradescope which page each problem is on.

Today
It’s notation day!
Two new different ways to represent propositions.

Also vocabulary catch-up.

Digital Logic

Digital Circuits
Computing With Logic
T corresponds to 1 or “high” voltage
F corresponds to 0 or “low” voltage

Gates
Take inputs and produce outputs (functions)
Several kinds of gates
Correspond to propositional connectives (most of them)

And Gate

a b a Ù b

T T T

T F F

F T F

F F F

a b OUT

1 1 1

1 0 0

0 1 0

0 0 0

AND Connective AND Gate

b
a

OUTAND

“block looks like D of AND”

a OUTANDba Ù b

vs.

Or Gate

a b a Ú b

T T T

T F T

F T T

F F F

a b OUT

1 1 1

1 0 1

0 1 1

0 0 0

OR Connective OR Gate

a OUTORba Ú b

vs.

a

b
OR

“arrowhead block looks like V”

OUT

Not Gates

¬a
NOT Gate

a ¬ a

T F

F T

a OUT

1 0

0 1

vs.NOT Connective

Also called
inverter

a OUTNOT

a OUTNOT

Blobs are Okay!

a OUTNOT

a
b

OUTAND

a
b

OUTOR

You may write gates using blobs instead of shapes!

Combinational Logic Circuits

Values get sent along wires connecting gates

NOT

OR

AND

AND

NOT

a

b

r
s

OUT

Combinational Logic Circuits

Values get sent along wires connecting gates

NOT

OR

AND

AND

NOT

a

b

r
s

OUT

¬𝑎 ∧ (¬𝑏 ∧ 𝑟 ∨ 𝑠)

Combinational Logic Circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND
a

b

r

OUT

Combinational Logic Circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND
a

b

r

OUT

𝑎 ∧ ¬𝑏 ∨ (¬𝑏 ∧ 𝑟)

Vocabulary Break!

Vocabulary!

Tautology if it is always true.
Contradiction if it is always false.
Contingency if it can be both true and false.

A proposition is a….

Tautology
If 𝑎 is true, 𝑎 ∨ ¬𝑎 is true; if 𝑎 is false, 𝑎 ∨ ¬𝑎 is true.

Contradiction
If 𝑎 is true, 𝑎 ⊕ 𝑎 is false; if 𝑎 is false, 𝑎 ⊕ 𝑎 is false.

Contingency If 𝑎 is true and 𝑏 is true, 𝑎 → 𝑏 ∧ 𝑎 is true;
If 𝑎 is true and 𝑏 is false, 𝑎 → 𝑏 ∧ 𝑎 is false.

𝑎 ∨ ¬𝑎

𝑎 ⊕ 𝑎

𝑎 → 𝑏 ∧ 𝑎

More Vocabulary
𝑎 → 𝑏

𝑎 is called the “hypothesis” or “antecedent” (or other names…)
𝑏 is called the “conclusion” or “consequent” (or other names…)

Back to Notation Day

On notation…
Logic is fundamental. Computer scientists use it in programs,
mathematicians use it in proofs, engineers use it in hardware,
philosophers use it in arguments,….
…so everyone uses different notation to represent the same ideas.

Since we don’t know exactly what you’re doing next, we’re going to
show you a bunch of them; but don’t think one is “better” than the
others!

Meet Boolean Algebra
Preferred by some mathematicians and circuit designers.
“or” is +
“and” is ⋅ (i.e. “multiply”)
“not” is ‘ (an apostrophe after a variable)

Why?
Mathematicians like to study “operations that work kinda like ‘plus’ and
‘times’ on integers.”
Circuit designers have a lot of variables, and this notation is more
compact.

Meet Boolean Algebra
Name Variables “True/False” “And” “Or” “Not” Implication

Java Code boolean b true,false && || ! No special
symbol

Propositional
Logic

"𝑥, 𝑦, 𝑎, 𝑏, 𝑟" T, F ∧ ∨ ¬ →

Circuits Wires 1, 0 No special
symbol

Boolean
Algebra

𝑎, 𝑏, 𝑐 1,0 ⋅
(“multiplication”)

+
(“addition”)

′
(apostrophe
after variable)

No special
symbol

𝑎 ∧ 𝑏 ∧ 𝑟 ∨ 𝑠 ∨ ¬𝑡 𝑎𝑏𝑟 + 𝑠 + 𝑡′

Propositional logic Boolean Algebra

Comparison

Remember this is just an alternate notation for the same underlying
ideas.
So that big list of identities? Just change the notation and you get
another big list of identities!

𝑎 ∧ 𝑏 ∧ 𝑟 ∨ 𝑠 ∨ ¬𝑡 𝑎𝑏𝑟 + 𝑠 + 𝑡′

Propositional logic Boolean Algebra

Boolean Algebra

Boolean Algebra

Boolean Algebra

An Exercise in Notation
The rest of today we’re solving a problem.

See the concepts we learned the last few days “in action”
And practice Boolean algebra and propositional logic.

Today’s Goal
Go from a problem statement to code to logical/circuit representation
to an “optimized” version.

Why?
Practice translating between different representations.
Practice applying simplification laws
Historical context! This process is reminiscent of “hardware acceleration” –
designing custom hardware to do a single task very fast.

Most design is done automatically these days, but it’s still nice to see once.

Our Goal
Given what day of the week it is and what kind of question you have, what’s
the quickest way to get it answered?
(this is an example, not actual advice)

Input: day of the week, Boolean talkToSomeone
Output: The way to get your question answered, according to the following
rules:
On M,Tu,W,F if you want to talk, go to office hours
On Th if you want to talk, go to section
Monday through Friday, if you don’t want to talk ask on Ed
On Saturday or Sunday, text a friend (whether you want to talk or not)

Step One
Input: day of the week, Boolean talkToSomeone
Output: The way to get your question answered, according to the
following rules:
On M,Tu,W,F if you want to talk, go to office hours
On Th if you want to talk, go to section
Monday through Friday, if you don’t want to talk ask on Ed
On Saturday or Sunday, text a friend (whether you want to talk or not)

Take 2 minutes plan what your code might look like.

Step One

One possibility (there are many)

Step Two
Go from a problem statement to code to logical/circuit representation
to an “optimized” version.
We want a logical/circuit representation.

talkToSomeone?Day?

0 1 2 3

Step Two
Input? Day in binary and talkToSomeone
Monday – 000 0 for false, 1 for true.
Tuesday – 001
Wednesday – 010
Thursday – 011
Friday – 100
Saturday – 101
Sunday – 110
(invalid) – 111

talkToSomeone?Day?

0 1 2 3

Step Two
Output? We’ll turn on only the wire for what to do
called a “one-hot” encoding, because one wire is on
(‘hot’)

Office Hour – 0
Section – 1
Ed – 2
Text a Friend – 3

talkToSomeone?Day?

0 1 2 3

Step Two
Day 𝒅𝟐 𝒅𝟏 𝒅𝟎 talkToSomeone 𝒐𝒖𝒕𝟎 (OH) 𝒐𝒖𝒕𝟏 (Se) 𝒐𝒖𝒕𝟐 (Ed) 𝒐𝒖𝒕𝟑 (TF)

Monday 0 0 0 0 1
Monday 0 0 0 1 1
Tuesday 0 0 1 0 1
Tuesday 0 0 1 1 1
Wednesday 0 1 0 0 1
Wednesday 0 1 0 1 1
Thursday 0 1 1 0 1
Thursday 0 1 1 1 1
Friday 1 0 0 0 1
Friday 1 0 0 1 1
Saturday 1 0 1 0 1
Saturday 1 0 1 1 1
Sunday 1 1 0 0 1
Sunday 1 1 0 1 1
--- 1 1 1 0
--- 1 1 1 1

Day 𝒅𝟐 𝒅𝟏 𝒅𝟎 talkToSomeone 𝒐𝒖𝒕𝟎 (OH) 𝒐𝒖𝒕𝟏 (Se) 𝒐𝒖𝒕𝟐 (Ed) 𝒐𝒖𝒕𝟑 (TF)

Monday 0 0 0 0 1
Monday 0 0 0 1 1
Tuesday 0 0 1 0 1
Tuesday 0 0 1 1 1
Wednesday 0 1 0 0 1
Wednesday 0 1 0 1 1
Thursday 0 1 1 0 1
Thursday 0 1 1 1 1
Friday 1 0 0 0 1
Friday 1 0 0 1 1
Saturday 1 0 1 0 1
Saturday 1 0 1 1 1
Sunday 1 1 0 0 1
Sunday 1 1 0 1 1
--- 1 1 1 0
--- 1 1 1 1

¬𝑑% ∧ ¬𝑑& ∧ ¬𝑑' ∧ 𝑠

¬𝑑% ∧ ¬𝑑& ∧ 𝑑' ∧ 𝑠

¬𝑑% ∧ 𝑑& ∧ ¬𝑑' ∧ 𝑠

𝑑% ∧ ¬𝑑& ∧ ¬𝑑' ∧ 𝑠

𝑜𝑢𝑡' = ¬𝑑% ∧ ¬𝑑& ∧ ¬𝑑' ∧ 𝑠 ∨ ¬𝑑% ∧ ¬𝑑& ∧ 𝑑' ∧ 𝑠 ∨
¬𝑑% ∧ 𝑑& ∧ ¬𝑑' ∧ 𝑠 ∨ (𝑑% ∧ ¬𝑑& ∧ ¬𝑑' ∧ 𝑠)

Day 𝒅𝟐 𝒅𝟏 𝒅𝟎 talkToSomeone 𝒐𝒖𝒕𝟎 (OH) 𝒐𝒖𝒕𝟏 (Se) 𝒐𝒖𝒕𝟐 (Ed) 𝒐𝒖𝒕𝟑 (TF)

Monday 0 0 0 0 1
Monday 0 0 0 1 1
Tuesday 0 0 1 0 1
Tuesday 0 0 1 1 1
Wednesday 0 1 0 0 1
Wednesday 0 1 0 1 1
Thursday 0 1 1 0 1
Thursday 0 1 1 1 1
Friday 1 0 0 0 1
Friday 1 0 0 1 1
Saturday 1 0 1 0 1
Saturday 1 0 1 1 1
Sunday 1 1 0 0 1
Sunday 1 1 0 1 1
--- 1 1 1 0
--- 1 1 1 1

𝑑%(𝑑&′𝑑'′𝑠

𝑑%′𝑑&′𝑑'𝑠

𝑑%′𝑑&𝑑'′𝑠

𝑑%𝑑&′𝑑'′𝑠

𝑜𝑢𝑡' = 𝑑%(𝑑&(𝑑'′𝑠 + 𝑑%′𝑑&′𝑑'𝑠+𝑑%′𝑑&𝑑'′𝑠+𝑑%𝑑&′𝑑'′𝑠

Day 𝒅𝟐 𝒅𝟏 𝒅𝟎 talkToSomeone 𝒐𝒖𝒕𝟎 (OH) 𝒐𝒖𝒕𝟏 (Se) 𝒐𝒖𝒕𝟐 (Ed) 𝒐𝒖𝒕𝟑 (TF)

Monday 0 0 0 0 1
Monday 0 0 0 1 1
Tuesday 0 0 1 0 1
Tuesday 0 0 1 1 1
Wednesday 0 1 0 0 1
Wednesday 0 1 0 1 1
Thursday 0 1 1 0 1
Thursday 0 1 1 1 1
Friday 1 0 0 0 1
Friday 1 0 0 1 1
Saturday 1 0 1 0 1
Saturday 1 0 1 1 1
Sunday 1 1 0 0 1
Sunday 1 1 0 1 1
--- 1 1 1 0
--- 1 1 1 1

𝑑%(𝑑&′𝑑'′𝑠

𝑑%′𝑑&′𝑑'𝑠

𝑑%′𝑑&𝑑'′𝑠

𝑑%𝑑&′𝑑'′𝑠

𝑜𝑢𝑡' = (𝑑%(𝑑&(𝑑'′ + 𝑑%′𝑑&′𝑑'+𝑑%′𝑑&𝑑'′+𝑑%𝑑&′𝑑'′)𝑠

Step Two
Day 𝒅𝟐 𝒅𝟏 𝒅𝟎 talkToSomeone 𝒐𝒖𝒕𝟎 (OH) 𝒐𝒖𝒕𝟏 (Se) 𝒐𝒖𝒕𝟐 (Ed) 𝒐𝒖𝒕𝟑 (TF)

Monday 0 0 0 0 1
Monday 0 0 0 1 1
Tuesday 0 0 1 0 1
Tuesday 0 0 1 1 1
Wednesday 0 1 0 0 1
Wednesday 0 1 0 1 1
Thursday 0 1 1 0 1
Thursday 0 1 1 1 1
Friday 1 0 0 0 1
Friday 1 0 0 1 1
Saturday 1 0 1 0 1
Saturday 1 0 1 1 1
Sunday 1 1 0 0 1
Sunday 1 1 0 1 1
--- 1 1 1 0
--- 1 1 1 1

Fill out the poll everywhere for
Activity Credit!

Go to pollev.com/cse311 and
login with your UW identity
Or text cse311 to 22333

Find the formula for
𝑜𝑢𝑡& in both Boolean
algebra and
propositional logic.

If you have extra time,
draw the circuit
representation.

Step Two
Day 𝒅𝟐 𝒅𝟏 𝒅𝟎 talkToSomeone 𝒐𝒖𝒕𝟎 (OH) 𝒐𝒖𝒕𝟏 (Se) 𝒐𝒖𝒕𝟐 (Ed) 𝒐𝒖𝒕𝟑 (TF)

Monday 0 0 0 0 1
Monday 0 0 0 1 1
Tuesday 0 0 1 0 1
Tuesday 0 0 1 1 1
Wednesday 0 1 0 0 1
Wednesday 0 1 0 1 1
Thursday 0 1 1 0 1
Thursday 0 1 1 1 1
Friday 1 0 0 0 1
Friday 1 0 0 1 1
Saturday 1 0 1 0 1
Saturday 1 0 1 1 1
Sunday 1 1 0 0 1
Sunday 1 1 0 1 1
--- 1 1 1 0
--- 1 1 1 1

𝑜𝑢𝑡& = 𝑑%(𝑑&𝑑'𝑠

𝑜𝑢𝑡& = ¬𝑑% ∧ 𝑑& ∧ 𝑑' ∧ 𝑠

Step Two
Day 𝒅𝟐 𝒅𝟏 𝒅𝟎 talkToSomeone 𝒐𝒖𝒕𝟎 (OH) 𝒐𝒖𝒕𝟏 (Se) 𝒐𝒖𝒕𝟐 (Ed) 𝒐𝒖𝒕𝟑 (TF)

Monday 0 0 0 0 1
Monday 0 0 0 1 1
Tuesday 0 0 1 0 1
Tuesday 0 0 1 1 1
Wednesday 0 1 0 0 1
Wednesday 0 1 0 1 1
Thursday 0 1 1 0 1
Thursday 0 1 1 1 1
Friday 1 0 0 0 1
Friday 1 0 0 1 1
Saturday 1 0 1 0 1
Saturday 1 0 1 1 1
Sunday 1 1 0 0 1
Sunday 1 1 0 1 1
--- 1 1 1 0
--- 1 1 1 1

𝑜𝑢𝑡% = 𝑑%(𝑑&(𝑑'(𝑠(+ 𝑑%(𝑑&(𝑑'𝑠(+ 𝑑%(𝑑&𝑑'𝑠(+ 𝑑%𝑑&(𝑑'(𝑠(

𝑜𝑢𝑡% = 𝑑%(𝑠(𝑑&(𝑑'(+ 𝑑&(𝑑' + 𝑑&𝑑' + 𝑑%𝑑&(𝑑'(𝑠′

Step Two
Day 𝒅𝟐 𝒅𝟏 𝒅𝟎 talkToSomeone 𝒐𝒖𝒕𝟎 (OH) 𝒐𝒖𝒕𝟏 (Se) 𝒐𝒖𝒕𝟐 (Ed) 𝒐𝒖𝒕𝟑 (TF)

Monday 0 0 0 0 1
Monday 0 0 0 1 1
Tuesday 0 0 1 0 1
Tuesday 0 0 1 1 1
Wednesday 0 1 0 0 1
Wednesday 0 1 0 1 1
Thursday 0 1 1 0 1
Thursday 0 1 1 1 1
Friday 1 0 0 0 1
Friday 1 0 0 1 1
Saturday 1 0 1 0 1
Saturday 1 0 1 1 1
Sunday 1 1 0 0 1
Sunday 1 1 0 1 1
--- 1 1 1 0
--- 1 1 1 1

𝑜𝑢𝑡) = 𝑑% 𝑑&(𝑑' + 𝑑&𝑑'(+ 𝑑&𝑑'

Ick
WOW that’s ugly.

Be careful when wires cross – draw one “jumping over” the other.

Can we do better
Maybe the factored version will be better?

Ehhhhhhh, it’s a little better?

Part of the problem here is Robbie’s art skills.
Part is some layout choices – commuting the terms might make things
prettier.

Most of the problem is just the circuit is complicated.
𝑜𝑢𝑡! is a little better.

Can we use these for anything?
Sometimes these concrete formulas lead to easier observations.
For example, we might have noticed we factored out 𝑠 or 𝑠"in three of
the four, which suggests switching 𝑠 first.

We could see that from the rules too! But sometimes switching
representations helps.

Can we use these for anything?
Is this code better? Maybe, maybe not.
It’s another tool in your toolkit for thinking about logic
Including logic you write in code!

Takeaways
Yet another notation for propositions.
These are just more representations – there’s only one underlying set of
rules.

Next time: wrap up digital logic and the tool really represent 𝑥 > 5.

Another Proof
Let’s prove that 𝑎 ∧ 𝑏 → (𝑏 ∨ 𝑎) is a tautology.

Alright, what are we trying to show?

Another Proof
𝑎 ∧ 𝑏 → (𝑏 ∨ 𝑎) ≡ ¬ 𝑎 ∧ 𝑏 ∨ 𝑏 ∨ 𝑎

≡ ¬𝑎 ∨ ¬𝑏 ∨ (𝑏 ∨ 𝑎)
≡ ¬𝑎 ∨ (¬𝑏 ∨ 𝑏 ∨ 𝑎)
≡ ¬𝑎 ∨ ¬𝑏 ∨ 𝑏 ∨ 𝑎
≡ ¬𝑎 ∨ (𝑏 ∨ ¬𝑏 ∨ 𝑎)
≡ ¬𝑎 ∨ (T ∨ 𝑎)
≡ ¬𝑎 ∨ (𝑎 ∨ T)
≡ ¬𝑎 ∨ 𝑎
≡ 𝑎 ∨ ¬𝑎
≡ T

Law of Implication
It’s easier if everything is AND/OR/NOT

Associative (twice)
Put 𝑏,¬𝑏 next to each other.

DeMorgan’s Law
Gets rid of some parentheses/just a gut feeling.

Commutative, Negation
Simplify out the 𝑏,¬𝑏.Commutative, Domination
Simplify out the T.Commutative, Negation
Simplify out the 𝑎,¬𝑎.

Proof-writing tip:
Take a step back.
Pause and carefully look
at what you have. You
might see where to go
next…

We’re done!

Another Proof
𝑎 ∧ 𝑏 → (𝑏 ∨ 𝑎) ≡ ¬ 𝑎 ∧ 𝑏 ∨ 𝑏 ∨ 𝑎

≡ ¬𝑎 ∨ ¬𝑏 ∨ (𝑏 ∨ 𝑎)
≡ ¬𝑎 ∨ (¬𝑏 ∨ 𝑏 ∨ 𝑎)
≡ ¬𝑎 ∨ ¬𝑏 ∨ 𝑏 ∨ 𝑎
≡ ¬𝑎 ∨ (𝑏 ∨ ¬𝑏 ∨ 𝑎)
≡ ¬𝑎 ∨ (T ∨ 𝑎)
≡ ¬𝑎 ∨ (𝑎 ∨ T)
≡ ¬𝑎 ∨ 𝑎
≡ 𝑎 ∨ ¬𝑎
≡ T

Law of implication
DeMorgan’s Law
Associative
Associative
Commutative
Negation
Commutative
Domination
Commutative
Negation

