CSE 311: Foundations of Computing

Lecture 23: DFAs and Directed Graphs

Selecting strings using labeled graphs as "machines"

Deterministic Finite Automata (Finite State Machines)

Which strings does this machine say are OK?

Which strings does this machine say are OK?

The set of all binary strings that end in 0

Deterministic Finite Automata (DFAs)

- States
- Transitions on input symbols
- Start state and final states
- The "language recognized" by the machine is the set of strings that reach a final state from the start

Deterministic Finite Automata (DFAs)

- Each machine designed for strings over some fixed alphabet Σ.
- Must have a transition defined from each state for every symbol in Σ .

Old State	0	1
s ₀	s ₀	S ₁
S ₁	s ₀	S ₂
S ₂	s ₀	S ₃
S ₃	S ₃	S ₃

Old State	0	1	
s ₀	s ₀	s ₁	
S ₁	s ₀	S ₂	
S ₂	s ₀	s ₃	
S ₃	S ₃	S ₃	

The set of all binary strings that contain 111 or don't end in 1

Old State	0	1	
s ₀	s ₀	S ₁	
S ₁	s ₀	S ₂	
s ₂	s ₀	S ₃	
S ₃	S ₃	S ₃	

The set of all binary strings with # of 1's \equiv # of 0's (mod 2) (both are even or both are odd).

You will be assigned to breakout rooms. Please:

- Introduce yourself
- Choose someone to share their screen, showing this PDF
- Design a DFA with input alphabet $\Sigma = \{0,1,2\}$ that recognizes precisely the strings where the sum of the digits is congruent 0 mod 3.

(Hint: Try it first with just the alphabet {0,1})

Fill out the poll everywhere for Activity Credit! Go to <u>pollev.com/philipmg</u> and login with your UW identity

You will be assigned to breakout rooms. Please:

- Introduce yourself
- Choose someone to share their screen, showing this PDF
- Design a DFA with input alphabet $\Sigma = \{0,1,2\}$ that recognizes precisely the strings where the sum of the digits is congruent 0 mod 3.

One possible solution:

A relation on A is a set $R \subseteq A \times A$

R is **reflexive** iff $(a,a) \in R$ for every $a \in A$ R is **symmetric** iff $(a,b) \in R$ implies $(b, a) \in R$ R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$ R is **transitive** iff $(a,b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Examples:

- $R_1 = \{ (x, y) : x, y \in \mathbb{R} \text{ with } x \ge y \}$: reflexive, antisymmetric, transitive
- $R_2 = \{ (x, y) : x, y \in \mathbb{Z} \text{ with } x \equiv y \mod 5 \}$: reflexive, symmetric, transitive

Definition. A *directed graph* is a pair (V, E), where E is a relation on V. The *vertex set* V can be any set; E is the *edge set*.

Definition. A *directed graph* is a pair (V, E), where E is a relation on V. The *vertex set* V can be any set; E is the *edge set*.

Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }

Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }

How Properties of Relations show up in Graphs

Let R be a relation on A. R is **reflexive** iff (a,a) \in R for every $a \in A$

R is **symmetric** iff $(a,b) \in R$ implies $(b, a) \in R$

R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$

R is **transitive** iff $(a,b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Paths in Relations and Graphs

Definition: Let G = (V, E) be a graph. A *path* in G is a sequence $v_0, v_1, ..., v_k$ where each (v_i, v_{i+1}) is in E. $(0 \le i < k)$

Definition: The **length** of a path v_0 , v_1 , ..., v_k is k, the number of edges in it (counting repetitions if edge used > once).

Definition: Let G = (V, E) be a graph. A *path* in G is a sequence $v_0, v_1, ..., v_k$ where each (v_i, v_{i+1}) is in E. $(0 \le i < k)$

Definition: The **length** of a path v_0 , v_1 , ..., v_k is k, the number of edges in it (counting repetitions if edge used > once).

Let
$$R$$
 be a relation on a set A . There is a path of
length n from a to b if and only if $(a,b) \in R^n$
in the graph (A,R)

Defn: Two vertices in a graph are **connected** iff there is a path between them.

Let **R** be a relation on a set **A**. The **connectivity** relation \mathbf{R}^* consists of the pairs (a,b) such that there is a path from a to b in **R**.

Note: The text uses the wrong definition of this quantity. What the text defines (ignoring k=0) is usually called R⁺

Transitive-Reflexive Closure

Add the **minimum possible** number of edges to make the relation transitive and reflexive.

The **transitive-reflexive closure** of a relation *R* is the connectivity relation *R**

Transitive-Reflexive Closure

Relation with the **minimum possible** number of **extra edges** to make the relation both transitive and reflexive.

The **transitive-reflexive closure** of a relation *R* is the connectivity relation *R**

Let $A_1, A_2, ..., A_n$ be sets. An *n*-ary relation on these sets is a subset of $A_1 \times A_2 \times \cdots \times A_n$.

Example application: Database theory

Student_Name	ID_Number	Office	GPA
Knuth	328012098	022	4.00
Von Neuman	481080220	555	3.78
Russell	238082388	022	3.85
Einstein	238001920	022	2.11
Newton	1727017	333	3.61
Karp	348882811	022	3.98
Bernoulli	2921938	022	3.21

Relational Composition using Digraphs

If $S = \{(2, 2), (2, 3), (3, 1)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $R \circ S$

Relational Composition using Digraphs

If $S = \{(2, 2), (2, 3), (3, 1)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $R \circ S$

Relational Composition using Digraphs

If $S = \{(2, 2), (2, 3), (3, 1)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $R \circ S$

