CSE 311: Foundations of Computing

Lecture 7: Logical Inference

Recap from last lecture: Logical inference

- <u>Given:</u> A list of (predicate/prop. logic) formulas as facts.
- <u>Question:</u> What other facts can be derived from those?
- Our first inference rule: Modus Ponens
 Application: If our list of given facts includes both q and r then we can infer that also r is true.
- Modus Ponens is written in compact form as

<u>q, q → r</u> ∴ r

Axioms: Special inference rules

Example (Excluded Middle):

 $\therefore A \lor \neg A$

 $A \lor \neg A$ must be true.

Show that **s** follows from $\mathbf{q}, \mathbf{q} \rightarrow \mathbf{r}$, and $\mathbf{r} \rightarrow \mathbf{s}$

- 1. q Given
- 2. $\mathbf{q} \rightarrow \mathbf{r}$ Given
- 3. $r \rightarrow s$ Given
- 4.
- 5.

Show that **s** follows from $\mathbf{q}, \mathbf{q} \rightarrow \mathbf{r}$, and $\mathbf{r} \rightarrow \mathbf{s}$

- 1. q Given
- 2. $\mathbf{q} \rightarrow \mathbf{r}$ Given
- 3. $r \rightarrow s$ Given
- 4. r MP: 1, 2
- 5. **s** MP: 3, 4

Show that $\neg q$ follows from $q \rightarrow r$ and $\neg r$

1. $\mathbf{q} \rightarrow \mathbf{r}$ Given2. $\neg \mathbf{r}$ Given3.4.

Show that $\neg q$ follows from $q \rightarrow r$ and $\neg r$

1. $\mathbf{q} \rightarrow \mathbf{r}$ Given2. $\neg \mathbf{r}$ Given3. $\neg \mathbf{r} \rightarrow \neg \mathbf{q}$ Contrapositive: 14.

Show that $\neg q$ follows from $q \rightarrow r$ and $\neg r$

1. $\mathbf{q} \rightarrow \mathbf{r}$ Given2. $\neg \mathbf{r}$ Given3. $\neg \mathbf{r} \rightarrow \neg \mathbf{q}$ Contrapositive: 14. $\neg \mathbf{q}$ MP: 2, 3

Simple Propositional Inference Rules

Excluded middle plus two inference rules per binary connective, one to eliminate it and one to introduce it

How To Start:

We have givens, find the ones that go together and use them. Now, treat new things as givens, and repeat. $\frac{q, q \rightarrow r}{\therefore r}$

 $q \wedge r$ $\therefore q, r$

1.
 2.
 3.
 4.
 5.
 6.

1.
$$q$$
Given2. $q \rightarrow r$ Given3..4..5..6..

1.
$$q$$
Given2. $q \rightarrow r$ Given3. r MP: 1, 24.5.5.6.

1.	q	Given
2.	$q \rightarrow r$	Given
3.	r	MP: 1, 2
4.	$q \wedge r$	Intro ∧: 1, 3
5.		
6.		

1.	q	Given
2.	$q \rightarrow r$	Given
3.	r	MP: 1, 2
4.	$q \wedge r$	Intro ∧: 1, 3
5.	$(q \wedge r) \rightarrow s$	Given
6.		

1.	q	Given
2.	$q \rightarrow r$	Given
3.	r	MP: 1, 2
4.	$q \wedge r$	Intro ∧: 1, 3
5.	$(q \wedge r) \rightarrow s$	Given
6.	S	MP: 4, 5

Two visuals of the same proof. We will use the top one, but if the bottom one helps you think about it, that's great!

1.
$$q$$
Given2. $q \rightarrow r$ Given3. r MP: 1, 24. $q \wedge r$ Intro \wedge : 1, 35. $(q \wedge r) \rightarrow s$ Given6. s MP: 4, 5

$$\begin{array}{cccc}
 q & q \to r \\
 q & r \\
 \end{array} MP$$

$$\begin{array}{c}
 q & \gamma \\
 \hline
 q & \gamma \\
 \hline
 q \wedge r \\
 \hline
 s \\
 \end{array} MP$$

Important: Applications of Inference Rules

- You can use equivalences to make substitutions of any sub-formula.
- Inference rules only can be applied to whole formulas (not correct otherwise).

Does not follow! e.g. q=F, r=F, s=T

Lecture 7 Activity

- You will be assigned to **breakout rooms**. Please:
- Introduce yourself
- Choose someone to share screen, showing this PDF
- Suppose you are given $p \rightarrow q$, $\neg s \rightarrow \neg q$ and p as facts. Find a sequence of inference rules that show that then s is true.

Fill out a poll everywhere for Activity Credit! Go to pollev.com/philipmg and login with your UW identity

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

First: Write down givens and goal

Idea: Work backwards!

20.

Prove that $\neg r$ follows from $p \land s, q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- We can use $q \rightarrow \neg r$ to get there.
- The justification between 2 and 20 looks like "elim →" which is MP.

MP: 2, ?

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- Now, we have a new "hole"
- We need to prove *q*...
 - Notice that at this point, if we prove *q*, we've proven ¬*r*...

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

18. $\neg \neg S$? $\neg \neg s$ doesn't show up in the givens but
s does and we can use equivalences19. q \lor Elim: 3, 1820. $\neg r$ MP: 2, 19

- **1.** $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given
- 17. *s*
- 18. ¬¬sDouble Negation: 17
- **19.** *q* ∨ Elim: 3, 18
- 20. *¬r* MP: 2, 19

1.	$p \wedge s$	Given	No holes left! We just
2.	$q ightarrow \neg r$	Given	need to clean up a bit.
3.	$\neg s \lor q$	Given	
17.	<i>S</i>	∧ Elim: 1	
18.	$\neg \neg S$	Double Negation:	: 17
19.	\boldsymbol{q}	∨ Elim: 3, 18	
20.	$\neg r$	MP: 2, 19	

1.	$p \wedge s$	Given

- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given
- **4.** *S* ∧ Elim: **1**
- 5. ¬¬*s* Double Negation: 4
- 6. *q* ∨ Elim: 3, 5
- 7. ¬*r* MP: 2, 6

- We use the direct proof rule
- The "pre-requisite" $A \implies B$ for the direct proof rule is a proof that "Given A, we can prove B."
- The direct proof rule:

If you have such a proof then you can conclude that $A \rightarrow B$ is true

Example:	Prove $\mathbf{q} \rightarrow (\mathbf{q} \lor \mathbf{r})$.	proof subroutine
Indent proof	1. <i>q</i>	Assumption
subroutine 🥣	2. <i>q</i> ∨ <i>r</i>	Intro ∨: 1
3.	$\boldsymbol{q} ightarrow (\boldsymbol{q} \lor \boldsymbol{r})$	Direct Proof Rule

Show that $q \rightarrow s$ follows from r and $(q \land r) \rightarrow s$

1. r Given 2. $(q \wedge r) \rightarrow s$ Given 3.1. *q* Assumption This is a If we know *q* is true... proof 3.2. $q \wedge r$ Intro $\wedge: 1, 3.1$ Then, we've shown of $q \rightarrow s$ 3.3. **s** MP: 2, 3.2 s is true 3. **Direct Proof Rule** $q \rightarrow s$

Example

Where do we start? We have no givens...

Prove: $(\mathbf{q} \land \mathbf{r}) \rightarrow (\mathbf{q} \lor \mathbf{r})$

Prove: $(\mathbf{q} \land \mathbf{r}) \rightarrow (\mathbf{q} \lor \mathbf{r})$

- **1.1.** *q* ∧ *r*
- 1.2. *q*
- **1.3.** *q* ∨ *r*
- **1.** $(\boldsymbol{q} \wedge \boldsymbol{r}) \rightarrow (\boldsymbol{q} \vee \boldsymbol{r})$

Assumption Elim A: 1.1 Intro V: 1.2 Direct Proof Rule

Prove: $((q \rightarrow r) \land (r \rightarrow s)) \rightarrow (q \rightarrow s)$

- Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.