CSE 311: Foundations of Computing

Lecture 26: Undecidability

DEFINE DOES ITHALT ( PROGRAM):

{
RETURN TRUE;
i

THE BIG PICTURE SOLUTION
To THE HALTING PROBLEM



Important Announcement

« After receiving a number of very well thought out
comments from students in the class...

— | have decided to replace the final exam

 Instead

— We will have a comprehensive Final Homework
Assignment that will open this Friday afternoon

— Grade weighting is TBA. It will be > a HW and < Midterm

— It will be due in Gradescope on Wednesday March 18 at
11:00 pm (the usual homework submission time)

— It will NOT use grinch.cs.washington.edu

— You will have to draw your FSMs by hand, copy and submit
them with your documentation. (Take pictures from INK.)



Last time: Countable sets

A set S is countable iff we can order the elements of S as
S = {xl,xz,xg,, }

Countable sets:
N - the natural numbers
7. - the integers
Q - the rationals Shown
2"~ the strings over any finite X $ by
The set of all Java programs “dovetailing”




Last time: Not every set is countable

Theorem [Cantor]:
The set of real numbers between 0 and 1 is not countable.

Proof using “diagonalization”.



Last time: Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

4 )
1 1 2 3 4 Flipping rule:
rp, 0 > 0 0 0 If digit is 5, make it 1.
r, 0. 3 35 3 3 If digit is not 5, make it 5.
AN J
rs 0 1 4 2 8 5 7 1 a4
r, 0. 1 4 1 51 9 2 6 5
For everyn = 1: ) 25 1 2 2
rp,#d= 0-31@225?335544355 “l'o 0% 0 o
because the numbers differ on 5
\the n-th digit! ) 8 1 8 2

So the list is incomplete, which is a contradiction.
Thus the real numbers between 0 and 1 are not countable: “uncountable”



A note on this proof

 The set of rational numbers in [0,1) also have
decimal representations like this
— The only difference is that rational numbers always

have repeating decimals in their expansions 0.33333...
or .25000000...

 So why wouldn’t the same proof show that this set
of rational numbers is uncountable?

— Given any listing (even one that is good like the
dovetailing listing) we could create the flipped diagonal
number d as before

— However, d would not have a repeating decimal
expansion and so wouldn’t be a rational #
It would not be a “missing” number, so no contradiction.



Last time:
The set of all functions f : N — {0, ..., 9} is uncountable

Supposed listing of all the functions:

1 2 3 4 (Flipping rule: h
f 51 0 0 o0 If f,,(n) = 5, set D(n) = 1
f, 3 35 3 3| Iff,(n)#5,setD(n) =5 )
fs 1 4 25 8 5 7 1 4
f, 1 4 1 5 9 2 6 5
f, 1 2 1 2 2° 1 2 2
fe 2 5 0 0 0 0° 0 O
f, 7 1 8 2 8 1 35 2

For all n, we have D(n) # f,,(n). Therefore D # f,, for any n and the
listis incomplete! = {f|f:N - {0,1,...,9}}is not countable



Last time: Uncomputable functions

We have seen that:
— The set of all (Java) programs is countable
— The set of all functions f : N — {0, ..., 9} is not countable

So: There must be some function f : N — {0, ..., 9} that is not
computable by any program!

Interesting... maybe.

Can we come up with an explicit function that is
uncomputable?



A “Simple” Program

public static void collatz(n) {
if (n == 1) {
return 1;
}
if (n % 2 ==0) {
return collatz(n/2)

}
else {

return collatz(3*n + 1)
}

¥

What does this program do?
. on n=11?
. 0N N=10000000000000000001?



A “Simple” Program

public static void collatz(n) {
if (n == 1) {
return 1;
}
if (n % 2 ==0) {
return collatz(n/2)

}
else {
} return collatz(3*n + 1) Nopody knows whether or not

this program halts on all inputs!

Trying to solve this has been

What does this program do? . _ _ §
called a “mathematical disease”.

. on n=11?
. ON N=10000000000000000001 ?



Recall our language picture

All

Context-Free
Binary Palindromes

Finite

{001, 10, 12}




Some Notation

We're going to be talking about Java code.
CODE (P) will mean “the code of the program P”

So, consider the following function:
public String P(String x) {
return new String(Arrays.sort(x.toCharArray());

}
What is P(CODE(P))?

“((0)))..;AACPSSaaabceeggghiiilnnnnnooprrrrrrrrrrrsssttttttuuwxxyy{}”



The Halting Problem

CODE (P) means “the code of the program P”
The Halting Problem

Given: - CODE(P) for any program P
- Input X

Output: true if P halts on input x
false if P does not halt on input x




Undecidability of the Halting Problem

CODE (P) means “the code of the program P”
The Halting Problem

Given: - CODE(P) for any program P
- Input X

Output: true if P halts on input x
false if P does not halt on input x

Theorem [Turing]: There is no program that solves
the Halting Problem



Proof by contradiction

 Suppose that H is a Java program that solves the
Halting problem. Then we can write this program:

public static void D(x) {
if (H(x,x) == true) {
while (true); /* don’t halt */
}
else {
return; /* halt */

¥

}

 Does D(CODE(D)) halt?



public static void D(x) {
if (H(x,x) == true) {

Does D(CODE(D)) halt? \ while (true); /* don’t halt */
else {
return; /* halt */
}

}




Does D(CODE(D) ) halt?

public static void D(x) {
if (H(x,x) == true) {
while (true); /* don’t halt */

}
else {

return; /* halt * /
}

}

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

determine

Note: Even though the program D has a
while(true), that doesn’t mean that the
program D actually goes into an infinite
loop on input x, which is what H has to




public static void D(x) {
if (H(x,x) == true) {
Does D(CODE(D)) halt? \ while (true); /* don’t halt */
else {
return; /* halt x/
}
}

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Suppose that D(CODE(D) ) halts.
Then, by definition of H it must be that
H(CODE (D), CODE(D)) is true
Which by the definition of D means D(CODE (D) ) doesn’t halt



Does D(CODE(D) ) halt?

public static void D(x) {
if (H(x,x) == true) {
while (true); /* don’t halt */

}
else {

return; /* halt * /
}

}

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Suppose that D(CODE(D) ) halts.
Then, by definition of H it must be that
H(CODE (D), CODE(D)) is true
Which by the definition of D means D(CODE (D) ) doesn’t halt

Suppose that D(CODE (D) ) doesn’t halt.
Then, by definition of H it must be that
H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE (D) ) halts




public static void D(x) {
if (H(x,x) == true) {
Does D(CODE(D)) halt? , while (true); /* don’t halt */
else {
return; ek halt * /
}
}
H solves the halting problem implies that 5
H(CODE(D),x) is true iff D(x) halts, H(CODE(P 2 L. Pt
08" 2\
Suppose that D(CODE (D) ) halts. e QG‘OGG

Then, by definition of H it muys ‘\\a‘
H(CODE (D), C# “\Nas ((\05‘

Which by the defi=" (d0°" o™ “~0(CODE(D) ) doesn’t halt

eﬁggox(\ ((“P

\\)
Suppose tb “\j 6‘659 16esn’t halt.
T ,‘\\eo 90’&\\ 6t H it must be that Contradiction!
e{\g\e’ JOE (D), CODE (D)) is false

WhN_~0y the definition of D means D(CODE (D) ) halts



Done

 We proved that there is no computer
program that can solve the Halting Problem.

— There was nothing special about Java*
[Church-Turing thesis]

* This tells us that there is no compiler that can check our
programs and guarantee to find any infinite loops they
might have.



Where did the idea for creating D come from?

public static void D(x) {
if (H(x,x) == true) {
while (true); /* don’t halt */

}
else {

return; /* halt */
}

}

D halts on input code(P) iff H(code(P),code(P)) outputs false
iff P doesn’t halt on input code(P)

Therefore for any program P, D differs from P on input code(P)



All programs P

U U 0 U U "0 U U O

\o)

Connection to diagonalization |Write <P> for CODE(P)

<P,> <P,> <P,> <P,> <P.> <P.> .... Some possible inputs x

0O N o U B W N B

This listing of all programs really does exist
since the set of all Java programs is countable

The goal of this “diagonal” argument is not
to show that the listing is incomplete but
rather to show that a “flipped” diagonal
element is not in the listing



Connection to diagonalization |Write <P> for CODE(P)

All programs P

<P,> <P,> <P,> <P,> <P.> <P> ... Some possible inputs x
P10 1 1 01 1 1 0 0 0
P, {1 1 0 1 0 1 1 0 1 1
P, {1 0 1 0 0 O 0 O O O .
P, |0 1 0 1 O 1 o 1 0.
P. |0 1T 1 1 O 0 0 1.
P. | 1 0O 0 0 f 0 1 1
P, |1 1 1.0 0 0 O 0 O .
P .10 1 1 1 1 0 1 1 o 1 0.
Py
(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever




All programs P

U U 0 U U "0 U U O

\o)

Connection to diagonalization |Write <P> for CODE(P)

<P,> <P,> <P,> <P,> <P.> <P.> .... Some possible inputs x

0O N o U B W N B

-
ol 1 1 0 1

0 Want behavior of program D to be
1 1 0 1 O | like the flipped diagonal, so it can’t

1 0 10 0O O be in the list of all programs.

0 0l 1 S~ | U —o—
0 1 9 1.1 0 0 0

1 o oo 1“1 0 1 1

1 0 1 1 0 000 0 O .
o 1+ 1 11 01 1© 0 1 0.

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever




The Halting Problem isn’t the only hard problem

 Can use the fact that the Halting Problem is
undecidable to show that other problems are
undecidable

General method:

Prove that if there were a program deciding B then there

would be a way to build a program deciding the Halting
Problem.

“B decidable — Halting Problem decidable”
Contrapositive:

“Halting Problem undecidable — B undecidable”
Therefore B is undecidable



A CSE 141 assighment

Students should write a Java program that:
— Prints “Hello” to the console
— Eventually exits

Gradelt, Practicelt, etc. need to grade the
students.

How do we write that grading program?

WE CAN'T: THIS IS IMPOSSIBLE!



A related undecidable problem

* HelloWorldTesting Problem:
— Input: CODE(Q) and x
— Output:

True if Q outputs “HELLO WORLD"” on input x
False if Q does not output “HELLO WORLD” on input x

* Theorem: The HelloWorldTesting Problem is undecidable.

 Proof idea: Show that if there is a program T to decide

HelloWorldTesting then there is a program H to decide the
Halting Problem for code(P) and x.



A related undecidable problem

Suppose there is a program T that solves the
HelloWorldTesting problem. Define program H that takes
input CODE(P) and x and does the following:
— Creates CODE(Q) from CODE(P) by
(1) removing all output statements from CODE(P), and

(2) adding a System.out.printin(“HELLO WORLD”) immediately
before any spot where P could halt

Then runs T on input CODE(Q) and x.



A related undecidable problem

public class Q {
public static void main(String[] args) {
PrintStream out = System.out;
System.setOut(new PrintStream(
new WriterOutputStream(new StringWriter()));

P(args);

out.printin(“HELLO WORLD"”);

}
}

public class P {
public static void main(String[] args) { ... }



A related undecidable problem

* Suppose there is a program T that solves the
HelloWorldTesting problem. Define program H that takes
input CODE(P) and x and does the following:

— Creates CODE(Q) from CODE(P) by
(1) removing all output statements from CODE(P), and

(2) adding a System.out.printin(“HELLO WORLD”) immediately
before any spot where P could halt

Then runs T on input CODE(Q) and x.

* |f P halts on input x then Q prints HELLO WORLD and halts and so H
outputs true (because T outputs true on input CODE(Q))

 |f P doesn’t halt on input x then Q won’t print anything since we removed
any other print statement from CODE(Q) so H outputs false

We know that such an H cannot exist. Therefore T cannot exist.



The HaltsNolnput Problem

* Input: CODE(R) for program R
e Qutput: True if R halts without reading input
False otherwise.

Theorem: HaltsNolnput is undecidable

General idea “hard-coding the input”:

 Show how to use CODE(P) and x to build CODE(R) so
P halts on input Xx & R halts without reading input



The HaltsNolnput

public class R {

“u »n,

private static String x = “...7;

public static void main(String[] args) {
System.setin(new ReaderinputStream(
new StringReader(x)));

P(args);
}
}

public class P {
public static void main(String[] args) { ... }



The HaltsNolnput Problem

“Hard-coding the input”:

e Show how to use CODE(P) and x to build CODE(R) so
P halts on input x & R halts without reading input

 So if we have a program N to decide HaltsNolnput then we
can use it as a subroutine as follows to decide the Halting
Problem, which we know is impossible:

— Oninput CODE(P) and x, produce CODE(R). Then run N on input
CODE(Q) and output the answer that N gives.



CSE 141 grading is impossible

 The impossibility of writing the CSE 141 grading
program follows by combining the ideas from the
undecidability of HaltsNolnput and HelloWorld.



