
CSE 311: Foundations of Computing

Lecture 26:  Undecidability



Important Announcement

• After receiving a number of very well thought out 

comments from students in the class… 

– I have decided to replace the final exam

• Instead
– We will have a comprehensive Final Homework 

Assignment that will open this Friday afternoon

– Grade weighting is TBA.  It will be > a HW and < Midterm

– It will be due in Gradescope on Wednesday March 18 at 

11:00 pm (the usual homework submission time)

– It will NOT use grinch.cs.washington.edu

– You will have to draw your FSMs by hand, copy and submit 

them with your documentation.  (Take pictures from INK.)



Last time:  Countable sets

A set � is countable iff we can order the elements of � as

� = {��, ��, ��, … }

Countable sets:

ℕ - the natural numbers

ℤ - the integers

ℚ - the rationals

Σ∗- the strings over any finite Σ

The set of all Java programs

Shown

by

“dovetailing”



Last time: Not every set is countable

Theorem [Cantor]:

The set of real numbers between 0 and 1 is not countable.

Proof using “diagonalization”.



Last time: Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

1 2 3 4 5 6 7 8 9 ...

r1 0. 5 0 0 0 0 0 0 0 ... ...

r2 0. 3 3 3 3 3 3 3 3 ... ...

r3 0. 1 4 2 8 5 7 1 4 ... ...

r4 0. 1 4 1 5 9 2 6 5 ... ...

r5 0. 1 2 1 2 2 1 2 2 ... ...

r6 0. 2 5 0 0 0 0 0 0 ... ...

r7 0. 7 1 8 2 8 1 8 2 ... ...

r8 0. 6 1 8 0 3 3 9 4 ... ...

... .... ... .... .... ... ... ... ... ... ...

Flipping rule:

If digit is 5, make it 1.

If digit is not 5, make it 5.

1

5

5

5

5

5

1

5

So the list is incomplete, which is a contradiction.

Thus the real numbers between 0 and 1 are not countable: “uncountable”

For every � ≥ �:

�� ≠ � = �. �������������������� ⋯

because the numbers differ on

the �-th digit!



A note on this proof

• The set of rational numbers in [0,1) also have 

decimal representations like this

– The only difference is that rational numbers always 

have repeating decimals in their expansions 0.33333... 

or .25000000...

• So why wouldn’t the same proof show that this set 

of rational numbers is uncountable?

– Given any listing (even one that is good like the 

dovetailing listing) we could create the flipped diagonal 

number � as before

– However, � would not have a repeating decimal 

expansion and so wouldn’t be a rational #

It would not be a “missing” number, so no contradiction. 



Last time:

The set of all functions � ∶ ℕ → {0, … , 9} is uncountable

1 2 3 4 5 6 7 8 9 ...

f1 0. 5 0 0 0 0 0 0 0 ... ...

f2 0. 3 3 3 3 3 3 3 3 ... ...

f3 0. 1 4 2 8 5 7 1 4 ... ...

f4 0. 1 4 1 5 9 2 6 5 ... ...

f5 0. 1 2 1 2 2 1 2 2 ... ...

f6 0. 2 5 0 0 0 0 0 0 ... ...

f7 0. 7 1 8 2 8 1 8 2 ... ...

f8 0. 6 1 8 0 3 3 9 4 ... ...

... .... ... .... .... ... ... ... ... ... ...

1

5

5

5

5

5

1

5

For all �, we have # � ≠ $�(�).  Therefore # ≠ $� for any � and the 

list is incomplete!      ⇒ $  $: ℕ → {0,1, … , 9}} is not countable

Supposed listing of all the functions:

Flipping rule:

If $� � = �, set # � = �

If $� � ≠ �, set # � = �



Last time: Uncomputable functions

We have seen that:

– The set of all (Java) programs is countable

– The set of all functions � ∶ ℕ → {0, … , 9} is not countable

So:  There must be some function � ∶ ℕ → {0, … , 9} that is not

computable by any program!

Interesting… maybe.

Can we come up with an explicit function that is 

uncomputable? 



A “Simple” Program

public static void collatz(n) {

if (n == 1) {

return 1;

}

if (n % 2 == 0) {

return collatz(n/2)

}

else {

return collatz(3*n + 1)

}

}

What does this program do?

… on n=11?

… on n=10000000000000000001?

11

34

17

52

26

13

40
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10

5

16

8

4

2

1



A “Simple” Program

public static void collatz(n) {

if (n == 1) {

return 1;

}

if (n % 2 == 0) {

return collatz(n/2)

}

else {

return collatz(3*n + 1)

}

}

What does this program do?

… on n=11?

… on n=10000000000000000001?

Nobody knows whether or not 

this program halts on all inputs!

Trying to solve this has been 

called a “mathematical disease”. 



Recall our language picture

All

Context-Free

Regular

Finite

0*
DFA

NFA

Regex

Binary Palindromes

{001, 10, 12}

Java



Some Notation

We’re going to be talking about Java code. 

CODE(P) will mean “the code of the program P”

So, consider the following function:

public String P(String x) {

return new String(Arrays.sort(x.toCharArray());

}

What is P(CODE(P))?

“(((())))..;AACPSSaaabceeggghiiiilnnnnnooprrrrrrrrrrrsssttttttuuwxxyy{}”



Undecidability of The Halting Problem

CODE(P) means “the code of the program P”

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x



Undecidability of the Halting Problem

CODE(P) means “the code of the program P”

Theorem [Turing]:   There is no program that solves 

the Halting Problem

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x



Proof by contradiction

• Suppose that H is a Java program that solves the 

Halting problem.   Then we can write this program:

public static void D(x) {

if (H(x,x) == true) {

while (true);   /* don’t halt */

}

else {

return; /*    halt    */

}

}

• Does D(CODE(D)) halt?



public static void D(x) {

if (H(x,x) == true) {

while (true); /* don’t halt */

}

else {

return; /*    halt    */

}

}

Does D(CODE(D)) halt?



H solves the halting problem implies that                              
H(CODE(D),x) is true iff D(x) halts,  H(CODE(D),x) is false iff not

Suppose that D(CODE(D)) halts.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true

Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false

Which by the definition of D means D(CODE(D)) halts

public static void D(x) {

if (H(x,x) == true) {

while (true); /* don’t halt */

}

else {

return; /*    halt    */

}

}

Does D(CODE(D)) halt?

Note: Even though the program D has a

while(true), that doesn’t mean that the 

program D actually goes into an infinite 

loop on input x, which is what H has to 

determine



H solves the halting problem implies that                              
H(CODE(D),x) is true iff D(x) halts,  H(CODE(D),x) is false iff not

Suppose that D(CODE(D)) halts.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true

Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false

Which by the definition of D means D(CODE(D)) halts

public static void D(x) {

if (H(x,x) == true) {

while (true); /* don’t halt */

}

else {

return; /*    halt    */

}

}

Does D(CODE(D)) halt?



H solves the halting problem implies that                              
H(CODE(D),x) is true iff D(x) halts,  H(CODE(D),x) is false iff not

Suppose that D(CODE(D)) halts.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true

Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false

Which by the definition of D means D(CODE(D)) halts

public static void D(x) {

if (H(x,x) == true) {

while (true); /* don’t halt */

}

else {

return; /*    halt    */

}

}

Does D(CODE(D)) halt?



H solves the halting problem implies that                              
H(CODE(D),x) is true iff D(x) halts,  H(CODE(D),x) is false iff not

Suppose that D(CODE(D)) halts.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true

Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.

Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false

Which by the definition of D means D(CODE(D)) halts

public static void D(x) {

if (H(x,x) == true) {

while (true); /* don’t halt */

}

else {

return; /*    halt    */

}

}

Does D(CODE(D)) halt?

Contradiction!



Done

• We proved that there is no computer 

program that can solve the Halting Problem.

– There was nothing special about Java*        
[Church-Turing thesis]

• This tells us that there is no compiler that can check our 

programs and guarantee to find any infinite loops they 

might have.



Where did the idea for creating D come from?

public static void D(x) {

if (H(x,x) == true) {

while (true); /* don’t halt */

}

else {

return; /*    halt    */

}

}

D halts on input code(P)  iff H(code(P),code(P)) outputs false

iff P doesn’t halt on input code(P)

Therefore for any program P,  D differs from P on input code(P)



Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> .... Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

Write <P> for CODE(P)

This listing of all programs really does exist 

since the set of all Java programs is countable

The goal of this “diagonal” argument is not 

to show that the listing is incomplete but 

rather to show that a “flipped” diagonal 

element is not in the listing



Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> .... Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

0     1     1     0    1     1    1     0      0      0     1  ...

1     1     0     1    0     1    1     0      1      1     1  ...

1     0     1     0    0     0    0     0      0      0     1  ...

0     1     1     0    1     0    1     1      0      1     0  ...

0     1     1     1    1     1    1     0      0      0     1  ...

1     1     0     0    0     1    1     0      1      1     1  ...

1     0     1     1    0     0    0     0      0      0     1  ...

0     1     1     1    1     0    1     1      0      1     0  ...

.     .   .  .   .    .   .   .   .    .    .       .  

.     .   .  .   .    .   .   .   .    .    .       .  

(P,x) entry is 1 if program P halts on input x

and 0 if it runs forever

Write <P> for CODE(P)



Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> .... Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

0 1     1     0    1     1    1     0      0      0     1  ...

1     1 0     1    0     1    1     0      1      1     1  ...

1     0     1 0    0     0    0     0      0      0     1  ...

0     1     1     0 1     0    1     1      0      1     0  ...

0     1     1     1    1 1    1     0      0      0     1  ...

1     1     0     0    0     1 1     0      1      1     1  ...

1     0     1     1    0     0    0 0      0      0     1  ...

0     1     1     1    1     0    1     1 0      1     0  ...

.     .   .  .   .    .   .   .   .    .    .       .  

.     .   .  .   .    .   .   .   .    .    .       .  

(P,x) entry is 1 if program P halts on input x

and 0 if it runs forever

1

0

0

1

0

0

1

0

Write <P> for CODE(P)

Want behavior of program # to be 

like the flipped diagonal, so it can’t 

be in the list of all programs.  

(P,x) entry is 1 if program P halts on input x

and 0 if it runs forever



The Halting Problem isn’t the only hard problem

• Can use the fact that the Halting Problem is 
undecidable to show that other problems are 
undecidable

General method:

Prove that if there were a program deciding B then there    

would be a way to build a program deciding the Halting 
Problem. 

“B decidable  → Halting Problem decidable”

Contrapositive:

“Halting Problem undecidable → B undecidable” 

Therefore B is undecidable



A CSE 141 assignment

Students should write a Java program that:

– Prints “Hello” to the console

– Eventually exits

GradeIt, PracticeIt, etc. need to grade the 

students. 

How do we write that grading program?

WE CAN’T:  THIS IS IMPOSSIBLE!



A related undecidable problem

• HelloWorldTesting Problem: 

– Input:  CODE(Q) and x

– Output: 

True if Q outputs “HELLO WORLD” on input x

False if Q does not output “HELLO WORLD” on input x

• Theorem: The HelloWorldTesting Problem is undecidable.

• Proof idea:  Show that if there is a program T to decide 

HelloWorldTesting then there is a program H to decide the 

Halting Problem for code(P) and x.   



A related undecidable problem

• Suppose there is a program T that solves the 

HelloWorldTesting problem.   Define program H that takes 

input CODE(P) and x and does the following:

– Creates CODE(Q) from CODE(P) by 

(1) removing all output statements from CODE(P), and 

(2) adding a System.out.println(“HELLO WORLD”) immediately 

before any spot where P could halt

Then runs T on input CODE(Q) and x.



A related undecidable problem

public class Q {

public static void main(String[] args) {

PrintStream out = System.out;

System.setOut(new PrintStream(

new WriterOutputStream(new StringWriter()));

P(args);

out.println(“HELLO WORLD”);

}

}

public class P {

public static void main(String[] args) { ... }

...

}



A related undecidable problem

• Suppose there is a program T that solves the 

HelloWorldTesting problem.   Define program H that takes 

input CODE(P) and x and does the following:

– Creates CODE(Q) from CODE(P) by 

(1) removing all output statements from CODE(P), and 

(2) adding a System.out.println(“HELLO WORLD”) immediately 

before any spot where P could halt

Then runs T on input CODE(Q) and x.

• If P halts on input x then Q prints HELLO WORLD and halts and so H

outputs true (because T outputs true on input CODE(Q))

• If P doesn’t halt on input x then Q won’t print anything since we removed 

any other print statement from CODE(Q) so H outputs false

We know that such an H cannot exist. Therefore T cannot  exist.



The HaltsNoInput Problem

• Input:  CODE(R) for program R

• Output: True if R halts without reading input

False otherwise.

Theorem:  HaltsNoInput is undecidable

General idea “hard-coding the input”: 

• Show how to use CODE(P) and x to build CODE(R) so 

P halts on input x  ⇔ R halts without reading input



The HaltsNoInput

public class R {

private static String x = “...”;

public static void main(String[] args) {

System.setIn(new ReaderInputStream(

new StringReader(x)));

P(args);

}

}

public class P {

public static void main(String[] args) { ... }

...

}



The HaltsNoInput Problem

“Hard-coding the input”: 

• Show how to use CODE(P) and x to build CODE(R) so

P halts on input x  ⇔ R halts without reading input

• So if we have a program N to decide HaltsNoInput then we 

can use it as a subroutine as follows to decide the Halting 

Problem, which we know is impossible:

– On input CODE(P) and x, produce CODE(R). Then run N on input 

CODE(Q) and output the answer that N gives.



CSE 141 grading is impossible

• The impossibility of writing the CSE 141 grading 

program follows by combining the ideas from the 

undecidability of HaltsNoInput and HelloWorld.


