
CSE 311: Foundations of Computing

Lecture 24: Languages vs Representations:

Limitations of Finite Automata and Regular Expressions

Last time: NFA to DFA

c

a

b

0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

a,b,c

∅

1

0,1

0

0

1

1
0

Exponential Blow-up in Simulating Nondeterminism

• In general the DFA might need a state for every

subset of states of the NFA

– Power set of the set of states of the NFA

– �-state NFA yields DFA with at most �� states

– We saw an example where roughly �� is necessary

“Is the �th char from the end a 1?”

The famous “P=NP?” question asks whether a

similar blow-up is always necessary to get rid of

nondeterminism for polynomial-time algorithms

Last time: DFAs ≡ NFAs ≡ Regular expressions

We have shown how to build an optimal DFA for every
regular expression

– Build NFA

– Convert NFA to DFA using subset construction

– Minimize resulting DFA

Theorem: A language is recognized by a DFA (or NFA)
if and only if it has a regular expression

You need to know this fact but you don’t need to know and
we won’t ask you anything about the construction for the
“only if” direction from DFA/NFA to regular expression.

Languages represented by DFA, NFAs, or regular expressions

are called Regular Languages

Application of FSMs: Pattern matching

• Given

– a string s of � characters

– a pattern p of � characters

– usually � ≪ �

• Find

– all occurrences of the pattern p in the string s

• Obvious algorithm:

– try to see if p matches at each of the positions in s

stop at a failed match and try matching at the next

position: �(��) running time.

Application of FSMs: Pattern Matching

• With DFAs can do this in �(� + �) time.

• Even more general idea in practice: implemented

in regular expression pattern matchers like grep:

– Convert regular expression pattern to an NFA

– Start building the equivalent DFA from the NFA using

the subset construction but do this “on the fly”: only add

arcs that are actually followed by the input text

• See Extra Credit problem on HW8 for some ideas

of how to do it.

What languages have DFAs? CFGs?

All of them?

Languages and Representations!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA

NFA

Regex

Languages and Representations!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA

NFA

Regex

Warmup:

All finite

languages

are regular.

DFAs Recognize Any Finite Language

DFAs Recognize Any Finite Language

Construct a DFA for each string in the language.

Then, put them together using the union construction.

Languages and Machines!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA

NFA

Regex

Warmup 2:

Surprising

example here

An Interesting Infinite Regular Language

L = {x∊ {0, 1}*: x has an equal number of substrings 01 and 10}.

L is infinite.

0, 00, 000, …

L is regular. How could this be?

(It seems to be comparing counts and counting seems

hard for DFAs.)

An Interesting Infinite Regular Language

L = {x∊ {0, 1}*: x has an equal number of substrings 01 and 10}.

L is infinite.

0, 00, 000, …

L is regular. How could this be? It is just the set of binary strings

that are empty or begin and end with the same character!

s0

0

1 s4s3

0

1

01

s2s1

1

0

10

Languages and Representations!

All

Context-Free

Regular

Finite

0*
DFA

NFA

Regex

??? Main Event:

Prove there is

a context-free

language

that isn’t

regular.

{001, 10, 12}

The language of “Binary Palindromes” is Context-Free

S → ε | 0 | 1 | 0S0 | 1S1

Is the language of “Binary Palindromes” Regular ?

Is the language of “Binary Palindromes” Regular ?

Intuition (NOT A PROOF!):

Q: What would a DFA need to keep track of to decide the

language?

A: It would need to keep track of the “first part” of the input

in order to check the second part against it

…but there are an infinite # of possible first parts and we

only have finitely many states.

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:

– Assume (for contradiction) that it’s possible.

– Therefore, some DFA (call it M) exists that

recognizes B

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:

– Assume (for contradiction) that it’s possible.

– Therefore, some DFA (call it M) exists that

recognizes B

– Our goal is to show that M must be “confused”...

we want to show that it “does the wrong thing”.

How can a DFA be “wrong”?

– when it accepts or rejects a string it shouldn’t.

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:

– Assume (for contradiction) that it’s possible.

– Therefore, some DFA (call it M) exists that

recognizes B

– Our goal is to show that M must be “confused”...

we want to show that it “does the wrong thing”

accepts or rejects a string it shouldn’t.

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:

– Assume (for contradiction) that it’s possible.

– Therefore, some DFA (call it M) exists that recognizes B

– We want to show: M accepts or rejects a string it shouldn’t.

Key Idea 1: If two strings “collide” at any point, a

DFA can no longer distinguish between them!
0a1

?

0b1

The general proof strategy is:

– Assume (for contradiction) that it’s possible.

– Therefore, some DFA (call it M) exists that recognizes B

– We want to show: M accepts or rejects a string it shouldn’t.

Key Idea 1: If two strings “collide” at any point, a

DFA can no longer distinguish between them!

Key Idea 2: Our machine M has a finite number of

states which means if we have infinitely many

strings, two of them must collide!

B = {binary palindromes} can’t be recognized by any DFA

0a1
?

0b1

The general proof strategy is:

– Assume (for contradiction) that it’s possible.

– Therefore, some DFA (call it M) exists that recognizes B

– We want to show: M accepts or rejects a string it shouldn’t.

We choose an INFINITE set S of “partial strings”

(which we intend to complete later). It is imperative

that for every pair of strings in our set there is an

“accept” completion that the two strings DO NOT

SHARE.

B = {binary palindromes} can’t be recognized by any DFA

1

01

001

0001

00001

.............

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S={1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.

Key Idea 2: Our machine has a finite number of states which means

if we have infinitely many strings, two of them must collide!

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S={1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.

Since there are finitely many states in M and infinitely many

strings in S, there exist strings 0a1 ∈ S and 0b1 ∈ S with a≠b that

end in the same state of M.

SUPER IMPORTANT POINT: You do not get to choose

what a and b are. Remember, we’ve just proven they

exist…we have to take the ones we’re given!

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S = {0n1 : n ≥ 0}.

Since there are finitely many states in M and infinitely many

strings in S, there exist strings 0a1 ∈ S and 0b1 ∈ S with a≠b that

end in the same state of M.

SUPER IMPORTANT POINT: You do not get to choose

what a and b are. Remember, we’ve just proven they

exist…we have to take the ones we’re given!

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.

We show M accepts or rejects a string it shouldn’t.

Consider S = {0n1 : n ≥ 0}.

Since there are finitely many states in M and infinitely many

strings in S, there exist strings 0a1 ∈ S and 0b1 ∈ S with a≠b that

end in the same state of M.

Now, consider appending 0a to both strings.

Key Idea 1: If two strings “collide” at any point, a DFA can no longer

distinguish between them!

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S = {0n1 : n ≥ 0}.

Since there are finitely many states in M and infinitely many
strings in S, there exist strings 0a1 ∈ S and 0b1 ∈ S with a≠b that
end in the same state of M.

Now, consider appending 0a to both strings.

Then, since 0a1 and 0b1 end in the same state, 0a10a and
0b10a also end in the same state, call it q. But then M must
make a mistake: q needs to be an accept state since
0a10a ∈ B, but then M would accept 0b10a ∉ B which is an
error.

0a
a1

q
0a

0b1

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B.

We show M accepts or rejects a string it shouldn’t.

Consider S = {0n1 : n ≥ 0}.

Since there are finitely many states in M and infinitely many
strings in S, there exist strings 0a1 ∈ S and 0b1 ∈ S with a≠b that
end in the same state of M.

Now, consider appending 0a to both strings.

Then, since 0a1 and 0b1 end in the same state, 0a10a and 0b10a

also end in the same state, call it q. But then M must make a
mistake: q needs to be an accept state since 0a10a ∈ B, but then
M would accept 0b10a ∉ B which is an error.

This is a contradiction, since we assumed that M
recognizes B. Since M was arbitrary, there is no DFA that
recognizes B.

0a
a1

q
0a

0b1

Showing that a Language L is not regular

1. “Suppose for contradiction that some DFA M recognizes L.”

2. Consider an INFINITE set S of “partial strings” (which we

intend to complete later). It is imperative that for every pair

of strings in our set there is an “accept” completion that

the two strings DO NOT SHARE.

3. “Since S is infinite and M has finitely many states, there

must be two strings sa and sb in S for sa ≠ sb that end up at

the same state of M.”

4. Consider appending the (correct) completion t to each of

the two strings.

5. “Since sa and sb both end up at the same state of M, and

we appended the same string t, both sat and sbt end at the

same state q of M. Since sat ∈ L and sbt ∉ L, M does not

recognize L.”

6. “Since M was arbitrary, no DFA recognizes L.”

Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S =

Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S = {0n : n ≥ 0}. Since S is infinite and M has finitely many

states, there must be two strings, 0a and 0b for some a ≠ b

that end in the same state in M.

Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S = {0n : n ≥ 0}. Since S is infinite and M has finitely many

states, there must be two strings, 0a and 0b for some a ≠ b

that end in the same state in M.

Consider appending 1a to both strings.

Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S = {0n : n ≥ 0}. Since S is infinite and M has finitely many

states, there must be two strings, 0a and 0b for some a ≠ b

that end in the same state in M.

Consider appending 1a to both strings.

Note that 0a1a ∈ A, but 0b1a ∉ A since a ≠ b. But they both end

up in the same state of M, call it q. Since 0a1a ∈ A, state q

must be an accept state but then M would incorrectly accept

0b1a ∉ A so M does not recognize A.

Since M was arbitrary, no DFA recognizes A.

Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, accepts P.

Let S =

Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}. Since S is infinite and M has finitely many

states, there must be two strings, (a and (b for some a ≠ b that

end in the same state in M.

Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}. Since S is infinite and M has finitely many

states, there must be two strings, (a and (b for some a ≠ b that

end in the same state in M.

Consider appending)a to both strings.

Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}. Since S is infinite and M has finitely many

states, there must be two strings, (a and (b for some a ≠ b that

end in the same state in M.

Consider appending)a to both strings.

Note that (a)a ∈ P, but (b)a ∉ P since a ≠ b. But they both end up

in the same state of M, call it q. Since (a)a ∈ P, state q must be

an accept state but then M would incorrectly accept (b)a ∉ P so

M does not recognize P.

Since M was arbitrary, no DFA recognizes P.

Showing that a Language L is not regular

1. “Suppose for contradiction that some DFA M recognizes L.”

2. Consider an INFINITE set S of “partial strings” (which we

intend to complete later). It is imperative that for every pair

of strings in our set there is an “accept” completion that

the two strings DO NOT SHARE.

3. “Since S is infinite and M has finitely many states, there

must be two strings sa and sb in S for sa ≠ sb that end up at

the same state of M.”

4. Consider appending the (correct) completion t to each of

the two strings.

5. “Since sa and sb both end up at the same state of M, and

we appended the same string t, both sat and sbt end at the

same state q of M. Since sat ∈ L and sbt ∉ L, M does not

recognize L.”

6. “Since M was arbitrary, no DFA recognizes L.”

Fact: This method is optimal

• Suppose that for a language L, the set S is a largest set of

“partial strings” with the property that for every pair

sa≠ sb ∈ S, there is some string t such that one of sat, sbt is

in L but the other isn’t.

• If S is infinite then L is not regular

• If S is finite then the minimal DFA for L has precisely

|S| states, one reached by each member of S.

BTW: There is another method commonly used to prove

languages not regular called the Pumping Lemma that we

won’t use in this course. Note that it doesn’t always work.

