CSE 311: Foundations of Computing

Lecture 22: FSMs w/Output, FSM Minimization \& NFAs

Vending Machine

Enter 15 cents in dimes or nickels Press S or B for a candy bar

Vending Machine, v0.1

Basic transitions on \mathbf{N} (nickel), D (dime), B (butterfinger), S (snickers)

Vending Machine, v0.2

Adding output to states: N - Nickel, S - Snickers, B - Butterfinger

Vending Machine, v1.0

Adding additional "unexpected" transitions to cover all symbols for each state

State Minimization

- Many different FSMs (DFAs) for the same problem
- Take a given FSM and try to reduce its state set by combining states
- Algorithm will always produce the unique minimal equivalent machine (up to renaming of states) but we won't prove this

State Minimization Algorithm

1. Put states into groups based on their outputs (or whether they are final states or not)
2. Repeat the following until no change happens
a. If there is a symbol s so that not all states in a group G agree on which group s leads to, split G into smaller groups based on which group the states go to on s

3. Finally, convert groups to states

State Minimization Example

present state	0	1	2	3	output
S0	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
state					
transition table					

Put states into groups based on their outputs (or whether they are final states or not)

State Minimization Example

present state	next state				1
S0	S0	S1	S2	S3	
S1	S0	S3	S1	S5	1
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
state					
transition table					

Put states into groups based on their outputs (or whether they are final states or not)

State Minimization Example

present state	0	1	2	3	output
S0	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
state					
	transition table				

Put states into groups based on their outputs (or whether they are final states or not)

If there is a symbol s so that not all states in a group G agree on which group s leads to, split G based on which group the states go to on s

State Minimization Example

present state	0	1	2	3	output
S0	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
state					
transition table					

Put states into groups based on their outputs (or whether they are final states or not)

If there is a symbol s so that not all states in a group G agree on which group s leads to, split G based on which group the states go to on s

State Minimization Example

present state	next state				1
S0	output				
S1	S0	S1	S2	S3	
S2	S3	S1	S5	0	
S2	S3	S2	S4	1	
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
state					
transition table					

Put states into groups based on their outputs (or whether they are final states or not)

If there is a symbol s so that not all states in a group G agree on which group s leads to, split G based on which group the states go to on s

State Minimization Example

present state	next state				1
S0	output				
S1	S0	S1	S2	S3	
S2	S3	S1	S5	0	
S2	S3	S2	S4	1	
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
state					
transition table					

Put states into groups based on their outputs (or whether they are final states or not)

If there is a symbol s so that not all states in a group G agree on which group s leads to, split G based on which group the states go to on s

State Minimization Example

present state	0	1	2	3	output
S0	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
state					
	transition table				

Put states into groups based on their outputs (or whether they are final states or not)

If there is a symbol s so that not all states in a group G agree on which group s leads to, split G based on which group the states go to on s

State Minimization Example

present state	0	1	2	3	
S0	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
state					
transition table					

Finally convert groups to states:
Can combine states S0-S4 and S3-S5.

In table replace all S4 with S0 and all S5 with S3

Minimized Machine

present state	0	1	2	3	
S0	S0	S1	S2	S3	1
S1	S0	S3	S1	S3	0
S2	S1	S3	S2	S0	1
S3	S1	S0	S0	S3	0
state					
transition table					

A Simpler Minimization Example

A Simpler Minimization Example

Split states into
final/non-final groups

Every symbol causes the DFA to go from one group to the other so neither group needs to be split

Minimized DFA

Another way to look at DFAs

Definition: The label of a path in a DFA is the concatenation of all the labels on its edges in order

Lemma: x is in the language recognized by a DFA iff x labels a path from the start state to some final state

Nondeterministic Finite Automata (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
- Not required to have exactly 1 edge out of each state labeled by each symbol- can have 0 or >1
- Also can have edges labeled by empty string ε
- Definition: x is in the language recognized by an NFA if and only if x labels a path from the start state to some final state

Consider This NFA

What language does this NFA accept?

Consider This NFA

What language does this NFA accept?

$$
10(10)^{*} \cup 111(0 \cup 1)^{*}
$$

NFA ε-moves

NFA ε-moves

Strings over $\{0,1,2\}$ w/even \# of 2's OR sum to 0 mod 3

Three ways of thinking about NFAs

- Outside observer: Is there a path labeled by x from the start state to some final state?
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel

NFA for set of binary strings with a 1 in the $3^{\text {rd }}$ position from the end

NFA for set of binary strings with a 1 in the $3^{\text {rd }}$ position from the end

Compare with the smallest DFA

Parallel Exploration view of an NFA

Input string 0101100

