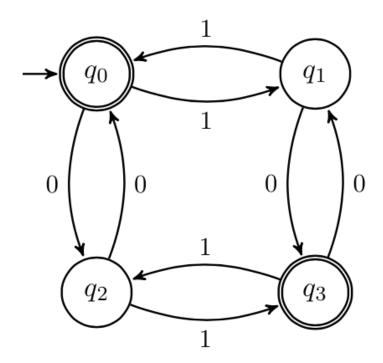
CSE 311: Foundations of Computing

Lecture 20: Directed Graphs, Closures, & Finite State Machines



Last Class: Relations & Composition

Let A and B be sets,

A binary relation from A to B is a subset of $A \times B$

Let A be a set,

A binary relation on A is a subset of $A \times A$

The composition of relation R and S, $S \circ R$ is the relation defined by:

 $S \circ R = \{ (a, c) \mid \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in S \}$

Last Class: Powers of a Relation

$$R^0 = \{(a, a) \mid a \in A\}$$
 "the equality relation on A "

$$R^{n+1} = R^n \circ R$$
 for $n \ge 0$

Last class: Matrix Representation

Relation \mathbf{R} on $\mathbf{A} = \{a_1, \dots, a_n\}$

$$\boldsymbol{m}_{ij} = \begin{cases} 1 & \text{if } (a_i, a_j) \in \boldsymbol{R} \\ 0 & \text{if } (a_i, a_j) \notin \boldsymbol{R} \end{cases}$$

 $\{(1, 1), (1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (3, 3), (4, 2), (4, 3)\}$

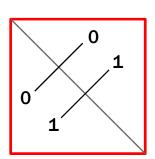
	1	2	3	4
1	1	1	0	1
2	1	0	1	0
3	0	1	1	0
4	0	1	1	0

Last class: Matrix Representation

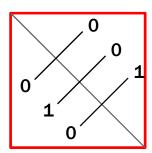
Relation \mathbf{R} on $\mathbf{A} = \{a_1, \dots, a_n\}$

$$\boldsymbol{m}_{ij} = \begin{cases} 1 & \text{if } (a_i, a_j) \in \boldsymbol{R} \\ 0 & \text{if } (a_i, a_j) \notin \boldsymbol{R} \end{cases}$$

reflexive



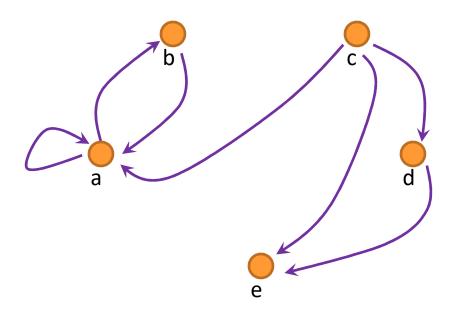
symmetric



antisymmetric

Last Class: Representation of Relations

Directed Graph Representation (Digraph)



How Properties of Relations show up in Graphs

Let R be a relation on A.

R is **reflexive** iff $(a,a) \in R$ for every $a \in A$

Go "self-loop" an even node

R is **symmetric** iff $(a,b) \in R$ implies $(b, a) \in R$

R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$

R is **transitive** iff $(a,b) \in R$ and $(b,c) \in R$ implies $(a,c) \in R$

How Properties of Relations show up in Graphs

Let R be a relation on A.

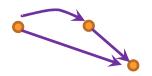
R is **reflexive** iff $(a,a) \in R$ for every $a \in A$

R is **symmetric** iff $(a,b) \in R$ implies $(b, a) \in R$

or

R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$

R is **transitive** iff $(a,b) \in R$ and $(b,c) \in R$ implies $(a,c) \in R$



G = (V, E) V – vertices

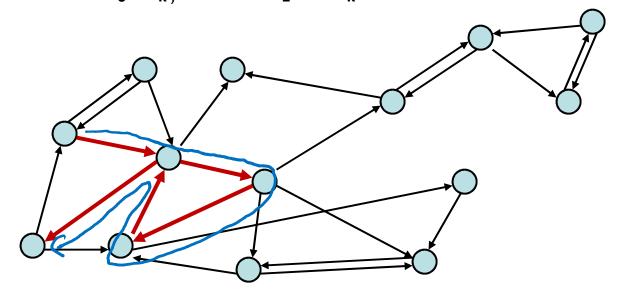
E – edges, ordered pairs of vertices $\sqrt{2}$

Path: $v_0, v_1, ..., v_k$ with each (v_i, v_{i+1}) in E

Simple Path: none of $\mathbf{v_0}$, ..., $\mathbf{v_k}$ repeated

Cycle: $v_0 = v_k$

Simple Čycle: $v_0 = v_k$ none of v_1 , ..., v_k repeated



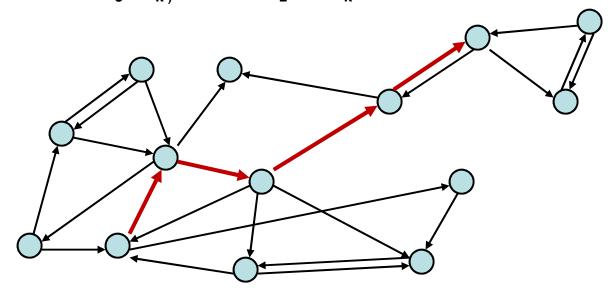
G = (V, E) V – vertices E – edges, ordered pairs of vertices

Path: $v_0, v_1, ..., v_k$ with each (v_i, v_{i+1}) in E

Simple Path: none of $\mathbf{v_0}$, ..., $\mathbf{v_k}$ repeated

Cycle: $v_0 = v_k$

Simple Čycle: $v_0 = v_k$, none of v_1 , ..., v_k repeated



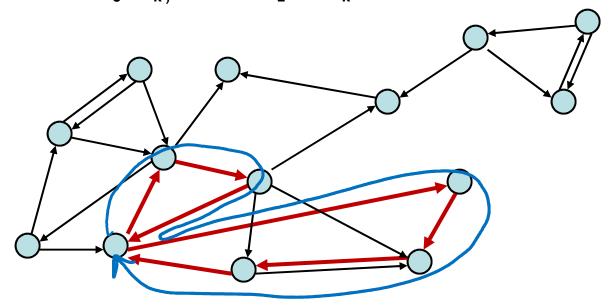
G = (V, E) V - vertices E - edges, ordered pairs of vertices

Path: $v_0, v_1, ..., v_k$ with each (v_i, v_{i+1}) in E

Simple Path: none of $\mathbf{v_0}$, ..., $\mathbf{v_k}$ repeated

Cycle: $v_0 = v_k$

Simple Cycle: $v_0 = v_k$, none of v_1 , ..., v_k repeated



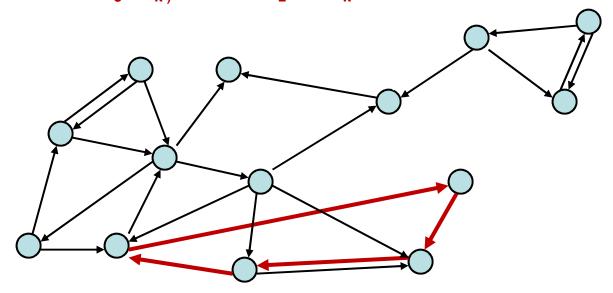
G = (V, E) V - vertices E - edges, ordered pairs of vertices

Path: $v_0, v_1, ..., v_k$ with each (v_i, v_{i+1}) in E

Simple Path: none of $\mathbf{v_0}$, ..., $\mathbf{v_k}$ repeated

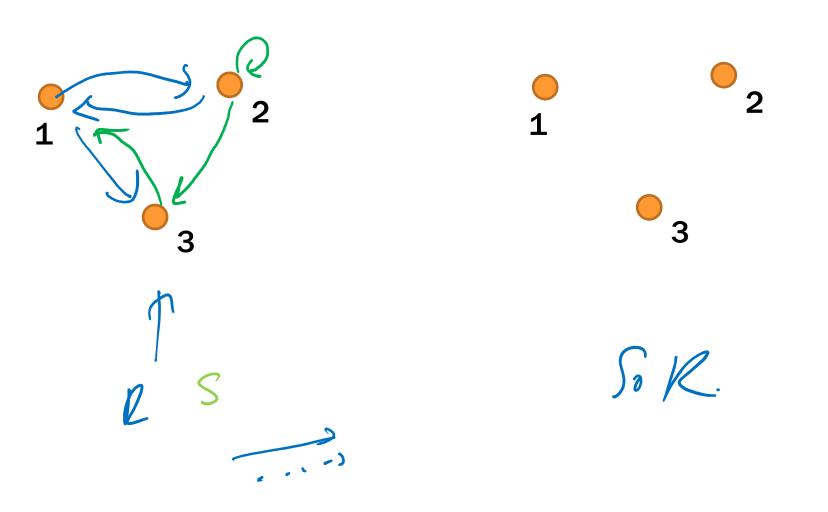
Cycle: $v_0 = v_k$

Simple Cycle: $\mathbf{v_0} = \mathbf{v_k}$, none of $\mathbf{v_1}$, ..., $\mathbf{v_k}$ repeated



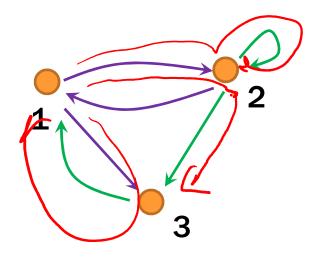
Relational Composition using Digraphs

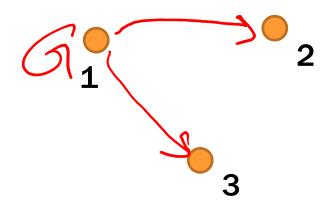
If $S = \{(2, 2), (2, 3), (3, 1)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $S \circ R$



Relational Composition using Digraphs

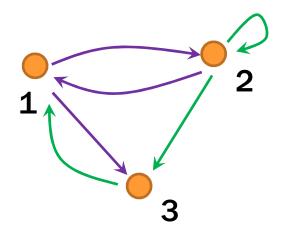
If $S = \{(2, 2), (2, 3), (3, 1)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $S \circ R$

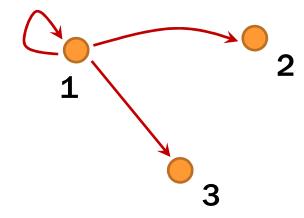




Relational Composition using Digraphs

If $S = \{(2, 2), (2, 3), (3, 1)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $S \circ R$





Paths in Relations and Graphs

Defn: The length

Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a,b) \in R^n$

```
-mark-
/sfnts
                                       STACK:
                                                   ERROR: syntaxerror
OFFENDING COMMAND: --nostringval--
                  cvt "p
                   G
                    ^
                  ...fpgm~
                   7
                   þ
                  +glyf»]l
                   Ь
                   headłMy-
                   6hhea > k
```