CSE 311: Foundations of Computing
Lecture 19: Context-Free Grammars, Relations and Directed Graphs

Q3 - Stronpa induction statement is recelsay. for proof.
Q $S(c)$ - Online submission quester correct. Fixed in DDF/Goradercos)e

Last Class: Context-Free Grammars

- A Context-Free Grammar (CFG) is given by a finite set of substitution rules involving
- A finite set \mathbf{V} of variables that can be replaced
- Alphabet Σ of terminal symbols that can't be replaced
- One variable, usually \mathbf{S}, is called the start symbol
- The rules involving a variable \mathbf{A} are written as

$$
A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}
$$

where each w_{i} is a string of variables and terminals that is $w_{i} \in(\mathbf{V} \cup \Sigma)^{*}$

Last Class: How CFGs generate strings

- Begin with start symbol S
- If there is some variable \mathbf{A} in the current string you can replace it by one of the w's in the rules for \mathbf{A}
$-A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{k}$
- Write this as $x A y \Rightarrow x w y$
- Repeat until no variables left
- The set of strings the CFG generates are all strings produced in this way that have no variables

Last Class: Context-Free Grammars

Example: $\quad \mathbf{S} \rightarrow \mathbf{O S O} \mathbf{O} \mathbf{1 S} 1|0| 1 \mid \varepsilon$

The set of all binary palindromes

Example: $\quad \mathbf{S} \rightarrow \mathbf{O S}|\mathbf{S} 1| \varepsilon$

0*1*

Last Class: Context-Free Grammars

Grammar for $\left\{0^{n} 1^{n}: n \geq 0\right\}$
(all strings with same \# of 0 's and 1's with all 0's before 1's)

$$
\mathbf{S} \rightarrow \mathbf{O S} 1 \mid \varepsilon
$$

Example: $\quad \mathbf{S} \rightarrow(\mathbf{S})|\mathbf{S S}| \varepsilon$

The set of all strings of matched parentheses

CFGs and recursively-defined sets of strings

- A CFG with the start symbol S as its only variable recursively defines the set of strings of terminals that \mathbf{S} can generate
- A CFG with more than one variable is a simultaneous recursive definition of the sets of strings generated by each of its variables
- Sometimes necessary to use more than one

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Generate $(2 * x)+y$

$$
\begin{aligned}
E \Rightarrow E+E & \Rightarrow(E)+E \Rightarrow(E \times E)+E \Rightarrow(2 * E)+E \\
& \Rightarrow(2 * x)+E \Rightarrow(2 * x)+y
\end{aligned}
$$

Generate $\mathrm{x}+\mathrm{y} * \mathrm{z}$ in two fundamentally different ways

$$
\begin{aligned}
& E \Rightarrow E+E \Rightarrow E+E \times E \\
& E \Rightarrow E * E \Rightarrow E+E * E . . .=x+y \times 2
\end{aligned}
$$

Simple Arithmetic Expressions

$$
\begin{aligned}
& E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
& \quad|5| 6|7| 8 \mid 9
\end{aligned}
$$

Generate $(2 * x)+y$

$$
\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow(\mathrm{E})+\mathrm{E} \Rightarrow(\mathrm{E} * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{E})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{E} \Rightarrow(2 * \mathrm{x})+\mathrm{y}
$$

Generate $\mathbf{x}+\mathrm{y} * \mathrm{z}$ in two fundamentally different ways

$$
\begin{aligned}
& \mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow \mathrm{x}+\mathrm{E} \Rightarrow \mathrm{x}+\mathrm{E} * \mathrm{E} \Rightarrow \mathrm{x}+\mathrm{y} * \mathrm{E} \Rightarrow \mathrm{x}+\mathrm{y} * \mathrm{z} \\
& \mathrm{E} \Rightarrow \mathrm{E} * \mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} * \mathrm{E} \Rightarrow \mathrm{x}+\mathrm{E} * \mathrm{E} \Rightarrow \mathrm{x}+\mathrm{y} * \mathrm{E} \Rightarrow \mathrm{x}+\mathrm{y} * z
\end{aligned}
$$

Parse Trees

Suppose that grammar G generates a string x

- A parse tree of x for G has
- Root labeled S (start symbol of G)
- The children of any node labeled A are labeled by symbols of w left-to-right for some rule $A \rightarrow w$
- The symbols of x label the leaves ordered left-to-right
$\mathbf{S} \rightarrow$ OSO \mid 1S1 $|0| 1 \mid \varepsilon$

Parse tree of 01110

Simple Arithmetic Expressions

$$
\begin{gathered}
E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4 \\
\quad|5| 6|7| 8 \mid 9
\end{gathered}
$$

Two parse trees for $2+3 * 4$

Building precedence in simple arithmetic expressions

- E - expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N} - number

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} \\
& \mathbf{T} \rightarrow \mathbf{F} \mid \mathbf{T} * \mathbf{F} \\
& \mathbf{F} \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
& \mathbf{I} \rightarrow \mathrm{x}|\mathrm{y}| \mathrm{z} \\
& \mathbf{N} \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

$$
2+3 * 4
$$

$$
E \Rightarrow E+T
$$

Building precedence in simple arithmetic expressions

- E - expression (start symbol)
- T-term \mathbf{F}-factor \mathbf{I}-identifier \mathbf{N} - number \mathbf{E}

$$
\begin{aligned}
\mathbf{E} & \rightarrow \mathbf{T} \mid \mathbf{E}+\mathbf{T} \\
\mathbf{T} & \rightarrow \mathbf{F} \mid \mathbf{T} * \mathbf{F} \\
\mathbf{F} & \rightarrow(\mathbf{E})|\mathbf{I}| \mathbf{N} \\
\mathbf{I} & \rightarrow \mathbf{x}|\mathrm{y}| \mathrm{z} \\
\mathbf{N} & \rightarrow 0|1| 2|3| 4 \mid \\
& 5|6| 7|8| 9
\end{aligned}
$$

Backus-Naur Form (The same thing...)

BNF (Backus-Naur Form) grammars

- Originally used to define programming languages
- Variables denoted by long names in angle brackets, e.g.
<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>
$::=$ used instead of \rightarrow

BNF for C (no <...> and uses: instead of ::=)

```
statement:
    ((identifier | "case" constant-expression | "default") ":")*
    (expression? ";" |
        block |
        "if" "(" expression ")" statement |
        "if" "(" expression ")" statement "else" statement |
        "switch" "(" expression ")" statement |
        "while" "(" expression ")" statement |
        "do" statement "while" "(" expression ")" ";" |
        "for" "(" expression? ";" expression? ";" expression? ")" statement |
        "goto" identifier ";" |
        "continue" ";" |
        "break" ";" |
        "return" expression? ";"
    )
block: "{" declaration* statement* "}"
expression:
    assignment-expression%
assignment-expression: (
            unary-expression (
                "=" | "*=" | "/=" | "%=" | "+=" | "-=" | "<<=" | ">>=" | "&=" |
            "^=" | "|="
        )
    )* conditional-expression
conditional-expression:
    logical-OR-expression ( "?" expression ":" conditional-expression )?
```


Parse Trees

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb>|<verb><object>
<object>::=<noun phrase>
Parse:
The yellow duck squeaked loudly
The red truck hit a parked car

Relations and Directed Graphs

Relations

Let A be a set,
A binary relation on A is a subset of $A \times A$

Relations You Already Know!

\geq on \mathbb{N}
That is: $\{(x, y): x \geq y$ and $x, y \in \mathbb{N}\}$
$<$ on \mathbb{R}
That is: $\{(x, y): x<y$ and $x, y \in \mathbb{R}\}$
$=$ on Σ^{*}
That is: $\left\{(x, y): x=y\right.$ and $\left.x, y \in \sum^{*}\right\}$
\subseteq on $\mathcal{P}(U)$ for universe U
That is: $\{(A, B): A \subseteq B$ and $A, B \in \mathcal{P}(U)\}$

More Relation Examples

$$
\begin{aligned}
& \mathbf{R}_{1}=\{(a, 1),(a, 2),(b, 1),(b, 3),(c, 3)\} \\
& \mathbf{R}_{2}=\{(x, y) \mid x \equiv y(\bmod 5)\}
\end{aligned}
$$

$$
R_{3}=\left\{\left(c_{1}, c_{2}\right) \mid c_{1} \text { is a prerequisite of } c_{2}\right\}
$$

$$
\mathbf{R}_{4}=\{(\mathrm{s}, \mathrm{c}) \mid \text { student } \mathrm{s} \text { has taken course } \mathrm{c}\}
$$

Properties of Relations

Let R be a relation on A.
R is reflexive iff $(a, a) \in R$ for every $a \in A$

$$
\leq,=\text { シ }(\bmod 5), \leq
$$

R is symmetric ff $(a, b) \in R$ implies $(b, a) \in R$

$$
=, \equiv(\bmod 57, \neq
$$

R is antisymmetric ff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$

R is transitive ff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

$$
=, \leqslant,>, \equiv(\bmod (5), \leq, \quad \text { oof: } \neq
$$

Which relations have which properties?

\geq on \mathbb{N} :
$<$ on \mathbb{R} :
$=$ on Σ^{*} :
\subseteq on $\mathcal{P}(\mathrm{U})$:
$\mathbf{R}_{\mathbf{2}}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x} \equiv \mathrm{y}(\bmod 5)\}$:
$R_{3}=\left\{\left(c_{1}, c_{2}\right) \mid c_{1}\right.$ is a prerequisite of $\left.c_{2}\right\}$:
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$ R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Which relations have which properties?

dNider: $\int(a, l) \& a\left(b\right.$ on $\left.\mathbb{N}^{+}\right\}$RAT
\geq on \mathbb{N} : Reflexive, Antisymmetric, Transitive

$<$ on \mathbb{R} : Antisymmetric, Transitive
$\simeq F$ on Σ^{*} : Reflexive, Symmetric, Antisymmetric, Transitive
\subseteq on $\mathcal{P}(\mathrm{U}):$ Reflexive, Antisymmetric, Transitive
$\leadsto \mathbf{R}_{\mathbf{2}}=\{(x, y) \mid x \equiv y(\bmod 5)\}:$ Reflexive, Symmetric, Transitive $\mathbf{R}_{\mathbf{3}}=\left\{\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right) \mid \mathrm{c}_{1}\right.$ is a prerequisite of $\left.\mathrm{c}_{2}\right\}$: Antisymmetric
R is reflexive of $(a, a) \in R$ for every $a \in A$
R is symmetric of $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric ff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$ R is transitive ff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Combining Relations

Let R be a relation from A to B. Let S be a relation from B to C.

The composition of R and $S, S \circ R$ is the relation $g \circ f$ from A to C defined by:

$S \circ R=\{(\mathrm{a}, \mathrm{c}) \mid \exists \mathrm{b}$ such that $(\mathrm{a}, \mathrm{b}) \in R$ and $(\mathrm{b}, \mathrm{c}) \in S\}$

Intuitively, a pair is in the composition if there is a "connection" from the first to the second.

Examples

$(a, b) \in$ Parent jiff b is a parent of a
$(a, b) \in$ Sister of b is a sister of a

When is $(x, y) \in$ Sister \circ Parent?

$$
y \text { is a decent of } x
$$

When is $(x, y) \in$ Parent \circ Sister?
"parent of x (who has a sister).

$$
S \circ R=\{(a, c) \mid \exists b \text { such that }(a, b) \in R \text { and }(b, c) \in S\}
$$

Examples

Using the relations: Parent, Child, Brother,

 Sister, Sibling, Father, Mother, Husband, Wife express:Uncle: b is an uncle of a
Brother o Para if

Cousin: b is a cousin of a
Child o Siblup o Pave rt

Powers of a Relation

$$
\begin{aligned}
R^{2} & =R \circ R \\
& =\{(a, c) \mid \exists b \text { such that }(a, b) \in R \text { and }(b, c) \in R\} \\
R^{0} & =\{(a, a) \mid a \in A\} \quad \text { "the equality relation on } A^{\prime \prime} \\
R^{1} & =R=R^{0} \circ R \\
R^{n+1} & =R^{n} \circ R \text { for } n \geq 0
\end{aligned}
$$

Matrix Representation

Relation \boldsymbol{R} on $\boldsymbol{A}=\left\{a_{1}, \ldots, a_{p}\right\}$

$$
\boldsymbol{m}_{\boldsymbol{i j}}= \begin{cases}1 & \text { if }\left(a_{i}, a_{j}\right) \in \boldsymbol{R} \quad \begin{array}{r}
\text { reflexive } \\
0
\end{array} \\
\text { if }\left(a_{i}, a_{j}\right) \notin \boldsymbol{R} & \text { sumac it }\end{cases}
$$

$$
\{(1,1),(1,2),(1,4),(2,1),(2,3),(3,2),(3,3),(4,2),(4,3)\}
$$

antisymmetric

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	1	1	0	1
$\mathbf{2}$	1	0	1	0
$\mathbf{3}$	0	1	1	0
$\mathbf{4}$	0	1	1	0

Directed Graphs

$G=(V, E)$
V - vertices
E - edges, ordered pairs of vertices
Path: $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ with each $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E
Simple Path: none of $\mathbf{v}_{\mathbf{0}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated Cycle: $v_{0}=v_{k}$ Simple Cycle: $\mathbf{v}_{\mathbf{0}}=\mathbf{v}_{\mathbf{k}}$, none of $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated

Directed Graphs

$G=(V, E)$
V - vertices
E - edges, ordered pairs of vertices
Path: $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ with each $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E
Simple Path: none of $\mathbf{v}_{0}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated Cycle: $\mathbf{v}_{0}=\mathbf{v}_{\mathbf{k}}$ Simple Cycle: $\mathbf{v}_{\mathbf{0}}=\mathbf{v}_{\mathbf{k}}$, none of $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated

Directed Graphs

$G=(V, E)$
V - vertices
E - edges, ordered pairs of vertices
Path: $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ with each $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E
Simple Path: none of $\mathbf{v}_{\mathbf{0}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated Cycle: $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$ Simple Cycle: $\mathbf{v}_{\mathbf{0}}=\mathbf{v}_{\mathbf{k}}$, none of $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated

Directed Graphs

$G=(V, E)$
V - vertices
E - edges, ordered pairs of vertices
Path: $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ with each $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E
Simple Path: none of $\mathbf{v}_{\mathbf{0}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated
Cycle: $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$
Simple Cycle: $\mathbf{v}_{\mathbf{0}}=\mathbf{v}_{\mathbf{k}}$, none of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated

Representation of Relations

Directed Graph Representation (Digraph)
$\{(a, b),(a, a),(b, a),(c, a),(c, d),(c, e)(d, e)\}$

Representation of Relations

Directed Graph Representation (Digraph)
$\{(a, b),(a, a),(b, a),(c, a),(c, d),(c, e)(d, e)\}$

Relational Composition using Digraphs

If $S=\{(2,2),(2,3),(3,1)\}$ and $R=\{(1,2),(2,1),(1,3)\}$
Compute $S \circ R$

Relational Composition using Digraphs

If $S=\{(2,2),(2,3),(3,1)\}$ and $R=\{(1,2),(2,1),(1,3)\}$
Compute $S \circ R$

Relational Composition using Digraphs

If $S=\{(2,2),(2,3),(3,1)\}$ and $R=\{(1,2),(2,1),(1,3)\}$
Compute $S \circ R$

Paths in Relations and Graphs

Defn: The length of a path in a graph is the number of edges in it (counting repetitions if edge used > once).

Let \boldsymbol{R} be a relation on a set \boldsymbol{A}. There is a path of length \boldsymbol{n} from \mathbf{a} to \mathbf{b} if and only if $(\mathbf{a}, \mathbf{b}) \in \boldsymbol{R}^{\boldsymbol{n}}$

Connectivity In Graphs

Defn: Two vertices in a graph are connected iff there is a path between them.

Let \boldsymbol{R} be a relation on a set \boldsymbol{A}. The connectivity relation \boldsymbol{R}^{*} consists of the pairs (a, b) such that there is a path from a to b in \boldsymbol{R}.

$$
R^{*}=\bigcup_{k=0}^{\infty} R^{k}
$$

Note: The text uses the wrong definition of this quantity. What the text defines (ignoring $k=0$) is usually called R^{+}

How Properties of Relations show up in Graphs

Let R be a relation on A .
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$
R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Transitive-Reflexive Closure

Add the minimum possible number of edges to make the relation transitive and reflexive.

The transitive-reflexive closure of a relation \boldsymbol{R} is the connectivity relation \boldsymbol{R}^{*}

Transitive-Reflexive Closure

Relation with the minimum possible number of extra edges to make the relation both transitive and reflexive.

The transitive-reflexive closure of a relation \boldsymbol{R} is the connectivity relation \boldsymbol{R}^{*}

n-ary Relations

Let $\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A n}$ be sets. An \boldsymbol{n}-ary relation on these sets is a subset of $\boldsymbol{A}_{\mathbf{1}} \times \boldsymbol{A}_{\mathbf{2}} \times \cdots \times \boldsymbol{A}_{\boldsymbol{n}}$.

Relational Databases

STUDENT

Student_Name	ID_Number	Office	GPA
Knuth	328012098	022	4.00
Von Neuman	481080220	555	3.78
Russell	238082388	022	3.85
Einstein	238001920	022	2.11
Newton	1727017	333	3.61
Karp	348882811	022	3.98
Bernoulli	2921938	022	3.21

Relational Databases

STUDENT Student_Name		ID_Number	Office	GPA
Knuth	328012098	022	4.00	Course
Knuth	328012098	022	4.00	CSE351
Von Neuman	481080220	555	3.78	CSE311
Russell	238082388	022	3.85	CSE312
Russell	238082388	022	3.85	CSE344
Russell	238082388	022	3.85	CSE351
Newton	1727017	333	3.61	CSE312
Karp	348882811	022	3.98	CSE311
Karp	348882811	022	3.98	CSE312
Karp	348882811	022	3.98	CSE344
Karp	348882811	022	3.98	CSE351
Bernoulli	2921938	022	3.21	CSE351

Relational Databases

STUDENT								TAKES		
Student_Name	ID_Number	Office	GPA		ID_Number	Course				
Knuth	328012098	022	4.00		328012098	CSE311				
Von Neuman	481080220	555	3.78		328012098	CSE351				
Russell	238082388	022	3.85		481080220	CSE311				
Einstein	238001920	022	2.11		238082388	CSE312				
Newton	1727017	333	3.61		238082388	CSE344				
Karp	348882811	022	3.98		238082388	CSE351				
Bernoulli	2921938	022	3.21		1727017	CSE312				

Database Operations: Projection

Find all offices: $\Pi_{\text {Office }}$ (STUDENT)

Office
022
555
333

Office	GPA
022	4.00
555	3.78
022	3.85
022	2.11
333	3.61
022	3.98
022	3.21

Database Operations: Selection

Find students with GPA > 3.9 : $\sigma_{\text {GPA }>3.9}($ STUDENT $)$

Student_Name	ID_Number	Office	GPA
Knuth	328012098	022	4.00
Karp	348882811	022	3.98

Retrieve the name and GPA for students with GPA > 3.9:
$\Pi_{\text {Student_Name,GPA }}\left(\sigma_{\text {GPA }>3.9}(\right.$ STUDENT $\left.)\right)$

Student_Name	GPA
Knuth	4.00
Karp	3.98

Database Operations: Natural Join

Student \bowtie Takes

Student_Name	ID_Number	Office	GPA	Course
Knuth	328012098	022	4.00	CSE311
Knuth	328012098	022	4.00	CSE351
Von Neuman	481080220	555	3.78	CSE311
Russell	238082388	022	3.85	CSE312
Russell	238082388	022	3.85	CSE344
Russell	238082388	022	3.85	CSE351
Newton	1727017	333	3.61	CSE312
Karp	348882811	022	3.98	CSE311
Karp	348882811	022	3.98	CSE312
Karp	348882811	022	3.98	CSE344
Karp	348882811	022	3.98	CSE351
Bernoulli	2921938	022	3.21	CSE351

