
CSE 311: Foundations of Computing

Lecture 17: Structural Induction, Regular expressions

Recursive Definitions of Sets: General Form

Recursive definition

– Basis step: Some specific elements are in S

– Recursive step: Given some existing named

elements in S some new objects constructed

from these named elements are also in S.

– Exclusion rule: Every element in S follows from

the basis step and a finite number of recursive

steps

Structural Induction

How to prove ∀ � ∈ �, �(�) is true:

Base Case: Show that �(
) is true for all specific
elements
 of � mentioned in the Basis step

Inductive Hypothesis: Assume that � is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that �(�) holds for each of the
new elements � constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that ∀ � ∈ �, �(�)

Strings

• An alphabet � is any finite set of characters

• The set Σ* of strings over the alphabet Σ is

defined by

– Basis: ε ��∗ (ε is the empty string w/ no chars)

– Recursive: if � ∈ Σ*, � ∈ Σ, then �� ∈ Σ*

Functions on Recursively Defined Sets (on Σ*)

Length:

len(ε) = 0

len(wa) = 1 + len(w) for w ∈ Σ*, a ∈ Σ

Reversal:

ε R = ε

(wa)R = awR for w ∈ Σ*, a ∈ Σ

Concatenation:

x • ε = x for x ∈ Σ*

x • wa = (x • w)a for x ∈ Σ*, a ∈ Σ

Number of c’s in a string:

#c(ε) = 0

#c(wc) = #c(w) + 1 for w ∈ Σ*

#c(wa) = #c(w) for w ∈ Σ*, a ∈ Σ, a ≠ c

Let P(y) be “len(x•y) = len(x) + len(y) for all x ∈ Σ* ” .

We prove P(y) for all y ∈ Σ* by structural induction.

Base Case: y= ε. For any x ∈ Σ*, len(x• ε) = len(x) = len(x) + len(ε)

since len(ε)=0. Therefore P(ε) is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary

w ∈ Σ*

Inductive Step: Goal: Show that P(wa) is true for every a ∈ Σ

Let a ∈ Σ. Let x ∈ Σ*. Then len(x•wa) = len((x•w)a) by defn of •

= len(x•w)+1 by defn of len

= len(x)+len(w)+1 by I.H.

= len(x)+len(wa) by defn of len

Therefore len(x•wa)= len(x)+len(wa) for all x ∈ Σ*, so P(wa) is true.

So, by induction len(x•y) = len(x) + len(y) for all x,y ∈ Σ*

Claim: len(x•y) = len(x) + len(y) for all x,y ∈ Σ*

Rooted Binary Trees

• Basis: • is a rooted binary tree

• Recursive step:

If and are rooted binary trees,

then also is a rooted binary tree.

T
1

T
2

T
1

T
2

Defining Functions on Rooted Binary Trees

• size(•) = 1

• size () = 1 + size(T
1
) + size(T

2
)

• height(•) = 0

• height ()=1 + max{height(T
1
), height(T

2
)}

T
1

T
2

T
1

T
2

Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”. We prove P(T) for all rooted binary

trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 1=21–1=20+1–1 so P(•) is true.

3. Inductive Hypothesis: Suppose that P(T
1
) and P(T

2
) are true for some

rooted binary trees T
1

and T
2
.

4. Inductive Step: Goal: Prove P().

By defn, size() =1+size(T
1
)+size(T

2
)

≤ 1+2height(T1)+1–1+2height(T2)+1-1

by IH for T
1

and T
2

≤ 2height(T1)+1+2height(T2)+1–1

≤ 2(2max(height(T1),height(T2))+1)–1

≤ 2(2height())–1 ≤ 2height()+1 –1

which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.

Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”. We prove P(T) for all rooted binary

trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 1=21–1=20+1–1 so P(•) is true.

3. Inductive Hypothesis: Suppose that P(T
1
) and P(T

2
) are true for some

rooted binary trees T
1

and T
2
.

4. Inductive Step: Goal: Prove P().

By defn, size() =1+size(T
1
)+size(T

2
)

≤ 1+2height(T1)+1–1+2height(T2)+1-1

by IH for T
1

and T
2

≤ 2height(T1)+1+2height(T2)+1–1

≤ 2(2max(height(T1),height(T2))+1)–1

≤ 2(2height())–1 ≤ 2height()+1 –1

which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.

Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”. We prove P(T) for all rooted binary

trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 1=21–1=20+1–1 so P(•) is true.

3. Inductive Hypothesis: Suppose that P(T
1
) and P(T

2
) are true for some

rooted binary trees T
1

and T
2
.

4. Inductive Step: Goal: Prove P().

By defn, size() =1+size(T
1
)+size(T

2
)

≤ 1+2height(T1)+1 -1+2height(T2)+1 -1

by IH for T
1

and T
2

= 2height(T1)+1+2height(T2)+1 -1

≤ 2(2max(height(T1),height(T2))+1) -1

= 2(2height()) - 1 = 2height()+1 -1

which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.

Languages: Sets of Strings

• Sets of strings that satisfy special properties

are called languages. Examples:

– English sentences

– Syntactically correct Java/C/C++ programs

– Σ* = All strings over alphabet Σ

– Palindromes over Σ

– Binary strings that don’t have a 0 after a 1

– Legal variable names. keywords in Java/C/C++

– Binary strings with an equal # of 0’s and 1’s

Regular Expressions

Regular expressions over Σ

• Basis:

∅, ε are regular expressions

a is a regular expression for any a ∈ Σ

• Recursive step:

– If A and B are regular expressions then so are:

(A ∪ B)

(AB)

A*

Each Regular Expression is a “pattern”

ε matches the empty string

a matches the one character string a

(A ∪ B) matches all strings that either A matches
or B matches (or both)

(AB) matches all strings that have a first part that
A matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after
another

Examples

001*

0*1*

Examples

001*

0*1*

{00, 001, 0011, 00111, …}

Any number of 0’s followed by any number of 1’s

Examples

(0 ∪ 1) 0 (0 ∪ 1) 0

(0*1*)*

Examples

(0 ∪ 1) 0 (0 ∪ 1) 0

(0*1*)*

{0000, 0010, 1000, 1010}

All binary strings

Examples

(0 ∪ 1)* 0110 (0 ∪ 1)*

(00 ∪ 11)* (01010 ∪ 10001) (0 ∪ 1)*

Examples

(0 ∪ 1)* 0110 (0 ∪ 1)*

(00 ∪ 11)* (01010 ∪ 10001) (0 ∪ 1)*

Binary strings that contain “0110”

Binary strings that begin with pairs of characters

followed by “01010” or “10001”

Regular Expressions in Practice

• Used to define the “tokens”: e.g., legal variable names,

keywords in programming languages and compilers

• Used in grep, a program that does pattern matching

searches in UNIX/LINUX

• Pattern matching using regular expressions is an essential

feature of PHP

• We can use regular expressions in programs to process

strings!

Regular Expressions in Java

• Pattern p = Pattern.compile("a*b");

• Matcher m = p.matcher("aaaaab");

• boolean b = m.matches();

[01] a 0 or a 1 ^ start of string $ end of string

[0-9] any single digit \. period \, comma \- minus

. any single character

ab a followed by b (AB)

(a|b) a or b (A ∪ B)

a? zero or one of a (A ∪ ε)

a* zero or more of a A*

a+ one or more of a AA*

• e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+$

General form of decimal number e.g. 9.12 or -9,8 (Europe)

