
CSE 311: Foundations of Computing

Lecture 17:  Structural Induction, Regular expressions



Recursive Definitions of Sets: General Form

Recursive definition

– Basis step: Some specific elements are in S

– Recursive step: Given some existing named 

elements in S some new objects constructed 

from these named elements are also in S.

– Exclusion rule:  Every element in S follows from 

the basis step and a finite number of recursive 

steps



Structural Induction

How to prove ∀ � ∈ �, �(�) is true:

Base Case: Show that �(
) is true for all specific 
elements 
 of � mentioned in the Basis step

Inductive Hypothesis:  Assume that � is true for some 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that �(�) holds for each of the 
new elements � constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀ � ∈ �, �(�) 



Strings

• An alphabet � is any finite set of characters

• The set Σ* of strings over the alphabet Σ is 

defined by

– Basis: ε ��∗ (ε is the empty string w/ no chars)

– Recursive: if � ∈ Σ*, � ∈ Σ, then �� ∈ Σ*



Functions on Recursively Defined Sets (on Σ*)

Length:

len(ε) = 0

len(wa) = 1 + len(w) for w ∈ Σ*, a ∈ Σ

Reversal:

ε R = ε

(wa)R = awR for w ∈ Σ*, a ∈ Σ

Concatenation:

x • ε = x for x ∈ Σ*

x • wa = (x • w)a for x ∈ Σ*, a ∈ Σ

Number of c’s in a string:

#c(ε) = 0

#c(wc) = #c(w) + 1 for w ∈ Σ*

#c(wa) = #c(w) for w ∈ Σ*, a ∈ Σ, a ≠ c



Let P(y) be “len(x•y) = len(x) + len(y) for all x ∈ Σ* ” .   

We prove P(y) for all y ∈ Σ* by structural induction.

Base Case: y= ε. For any x ∈ Σ*,  len(x• ε) = len(x) = len(x) + len(ε)     

since len(ε)=0.   Therefore P(ε) is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary

w ∈ Σ*

Inductive Step: Goal: Show that P(wa) is true for every a ∈ Σ

Let a ∈ Σ. Let x ∈ Σ*. Then len(x•wa) = len((x•w)a) by defn of •

=  len(x•w)+1 by defn of len

= len(x)+len(w)+1  by I.H.

= len(x)+len(wa) by defn of len

Therefore len(x•wa)= len(x)+len(wa) for all x ∈ Σ*, so P(wa) is true.

So, by induction len(x•y) = len(x) + len(y) for all x,y ∈ Σ*

Claim: len(x•y) = len(x) + len(y) for all x,y ∈ Σ*



Rooted Binary Trees

• Basis:  •    is a rooted binary tree

• Recursive step: 

If                and                are rooted binary trees,

then                      also is a rooted binary tree.   
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Defining Functions on Rooted Binary Trees

• size(•) = 1

• size ( ) = 1 + size(T
1
) + size(T

2
)

• height(•) = 0

• height ( )=1 + max{height(T
1
), height(T

2
)}
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Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 

trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 1=21–1=20+1–1 so P(•) is true.

3. Inductive Hypothesis: Suppose that P(T
1
) and P(T

2
) are true for some 

rooted binary trees T
1

and T
2
.

4. Inductive Step:             Goal:  Prove P( ).

By defn, size(             ) =1+size(T
1
)+size(T

2
)

≤ 1+2height(T1)+1–1+2height(T2)+1-1                    

by IH for T
1

and T
2

≤ 2height(T1)+1+2height(T2)+1–1

≤ 2(2max(height(T1),height(T2))+1)–1

≤ 2(2height(      ))–1 ≤ 2height(            )+1 –1

which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.
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Languages:  Sets of Strings

• Sets of strings that satisfy special properties 

are called languages.  Examples:

– English sentences

– Syntactically correct Java/C/C++ programs

– Σ* = All strings over alphabet  Σ

– Palindromes over  Σ

– Binary strings that don’t have a 0 after a 1

– Legal variable names. keywords in Java/C/C++

– Binary strings with an equal # of 0’s and 1’s



Regular Expressions

Regular expressions over Σ

• Basis:

∅, ε are regular expressions

a is a regular expression for any a ∈ Σ

• Recursive step:

– If A and B are regular expressions then so are:

(A ∪ B)

(AB)

A*



Each Regular Expression is a “pattern”

ε matches the empty string

a matches the one character string a

(A ∪ B) matches all strings that either A matches 
or B matches (or both)

(AB) matches all strings that have a first part that 
A matches followed by a second part that B
matches

A* matches all strings that have any number of 
strings (even 0) that A matches, one after 
another



Examples

001*

0*1*



Examples

001*

0*1*

{00, 001, 0011, 00111, …}

Any number of 0’s followed by any number of 1’s



Examples

(0 ∪ 1) 0 (0 ∪ 1) 0

(0*1*)*



Examples

(0 ∪ 1) 0 (0 ∪ 1) 0

(0*1*)*

{0000, 0010, 1000, 1010}

All binary strings



Examples

(0 ∪ 1)* 0110 (0 ∪ 1)*

(00 ∪ 11)* (01010 ∪ 10001) (0 ∪ 1)*



Examples

(0 ∪ 1)* 0110 (0 ∪ 1)*

(00 ∪ 11)* (01010 ∪ 10001) (0 ∪ 1)*

Binary strings that contain “0110”

Binary strings that begin with pairs of characters

followed by “01010” or “10001”



Regular Expressions in Practice

• Used to define the “tokens”: e.g., legal variable names, 

keywords in programming languages and compilers

• Used in grep, a program that does pattern matching 

searches in UNIX/LINUX

• Pattern matching using regular expressions is an essential 

feature of PHP

• We can use regular expressions in programs to process 

strings!



Regular Expressions in Java

• Pattern p = Pattern.compile("a*b"); 

• Matcher m = p.matcher("aaaaab"); 

• boolean b = m.matches();

[01] a 0 or a 1     ^ start of string     $ end of string

[0-9] any single digit       \. period    \, comma  \- minus

. any single character

ab         a followed by b            (AB)

(a|b) a or b (A ∪ B)

a? zero or one of a            (A ∪ ε)

a* zero or more of a          A*

a+ one or more of a         AA* 

• e.g.   ^[\-+]?[0-9]*(\.|\,)?[0-9]+$

General form of decimal number  e.g.  9.12  or -9,8 (Europe)


