CSE 311: Foundations of Computing

Lecture 17: Structural Induction, Regular expressions

OH NO! THE KILLER || BUT TD FIND THEM WE'D HAVE T0 SEARCH
MUST HAVE FOLLOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR
HER ON VACATION! || SOMETHING FORMATTED LIKE AN ADDRESS!

I
f% i i&h— IT5 HOPELESS)
_ T KNOWREGUAR L=

LB L

5 Jas

Q
& M

Recursive Definitions of Sets: General Form

Recursive definition

— Basis step: Some specific elements are in S

— Recursive step: Given some existing named
elements in S some new objects constructed
from these named elements are also in S.

— Exclusion rule: Every element in S follows from

the basis step and a finite number of recursive
steps

Structural Induction

How to prove V x € S, P(x) is true:

Base Case: Show that P(u) is true for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that V x € S, P(x)

Strings

 An alphabet X is any finite set of characters

 The set X * of strings over the alphabet X is
defined by

— Basis: £ € 2/¥)(¢ is the empty string w/ no chars)
— Recursive: ifwe 2*, a e 2, then wa € X*

Functions on Recursively Defined Sets (on X%)

Length:
len(g) =0
len(wa)=1+len(w)forwe X", aeX

Reversal:
eR=¢g
(wa)k=awRforwe X, aeX

Concatenation:
xec=xforx€ X"
xewa=(xew)aforxeX* aeX

Number of ¢’s in a string:
#(g)=0
(wec)=# (w)+1forweX”
#(wa)=#(w)forweX ", aeX, azc

Claim: len(xey) = len(x) + len(y) for all x,y € X~

Let P(y) be “len(xey) = len(x) + len(y) forall x e X*".
We prove P(y) for all y € X* by structural induction.

Base Case: y=c.Forany x € X%, len(xe €) = len(x) = len(x) + len(g)
since len(€)=0. Therefore P(¢g) is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
weEXY”

Inductive Step: |Goal: Show that P(wa) is true for every a € X

Leta e X. Letx € X*. Then len(xewa) = len((xew)a) by defn of e
= |len(xew)+1 by defn of len
= len(x)+len(w)+1 by I.H.
= len(x)+len(wa) by defn of len

Therefore len(xewa)= len(x)+len(wa) for all x € X*, so P(wa) is true.

So, by induction len(xey) = len(x) + len(y) for all x,y € X~

S\
Rooted Binary Trees

* Basis: .
* Recursive step:

Is a rooted binary tree

° *
If 71 and /% arerooted binary trees,
:. 1 “‘ 2 ‘t‘
Masssmmnmns T eemessenas t
—_— —

Defining Functions on Rooted Binary Trees

1 + size(T,) + size(T,)

=1 + max{height(T,), height(T,)}

Claim: For every rooted binary tree T, size(T) < 2heightT) +1 _ 1

& RT) be ()2 2 oD
Vﬁlb\h ()(_r)# A&’ MJ [/,‘W)fjwa lx«fM

Lage Coe: (T=) had)=Q o,
T ez =z 2 =2 Bl

-

— |

- W(’) ‘7'!'%*

Claim: For every rooted binary tree T, size(T) < 2heightM+1 _ 1

1. Let P(T) be “size(T) < 2heieht(M+1_1", We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(#)=1, height(#)=0 and 1=21-1=20+1—1 so P(e) is true.
7. M\u‘ﬂl \'Lnuhﬁfh' At/ 1’(4&\' p() dw} 0)(&) R
T g b e by ol G e) <A,

droe P S
(, Tode oz | 6 e § (ﬁ@]
b (%\ = stefh) e (A Y M
Z(ﬂlmﬂ&(@ﬂ\ l) B (,Z b |t (@-\-\:DA‘ \h 71#
- 1K*‘4‘~‘r(&>+(lag U B F)) a

L)
<). AR 7/\»««\«@1“/ ZAM T/ ﬂl"/

—) W\OJ\(‘/\L H’('tl')/v{:u’ (T-L)‘l‘\
- 5 - g |

Claim: For every rooted binary tree T, size(T) < 2heightT) +1 _ 1

1. Let P(T) be “size(T) < 2heieht(M+1_1", We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(*)=0 and 1=21-1=2%1-1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,.

4. Inductive Step: Goal: Prove P(\F/\)._|

Claim: For every rooted binary tree T, size(T) < 2heightT) +1 _ 1

1. Let P(T) be “size(T) < 2heieht(M+1_1", We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(*)=0 and 1=21-1=2%1-1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,.

4. Inductive Step: Goal: Prove P(: /\)_| OQQ:QB

By defn, S|ze(/\) 1+5|ze(T)+5|ze(T2) \‘7

..............

by IHfor T, and T,

— 2height(T1)+1+2height(T2)+1 -1
¢ dqﬁfb\

< 2(2max(height(T1) hew"

_z(zhelght(______________)) 1 = 2height(/.)+1 -1

..............

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.

Languages: Sets of Strings

e Sets of strings that satisfy special properties
are called languages. Examples:

— English sentences

— Syntactically correct Java/C/C++ programs

— ¥" = All strings over alphabet X

— Palindromes over %

— Binary strings that don’t have a O aftera 1

— Legal variable names. keywords in Java/C/C++
— Binary strings with an equal # of O’s and 1’s

Regular Expressions

Regular expressions over X
* Basis:
D, € are regular expressions
a is a regular expression foranya € X

* Recursive step:
— If A and B are regular expressions then so are:
(A U B)
(AB)
A*

r_\

Each Regular Expression is a “pattern”

€ matches the empty string
a matches the one character string a

(A U B) matches all strings that either A matches
or B matches (or both)

(AB) matches all strings that have a first part that
A matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after
another

Examples

001*
{00 0ol 0ol 00 (1], - - - 2

0*1* -
Al by LS L

Ay ¥ ol 07 Fllod by =
" 2 L (7

Examples

001*

{00, 001, 0011, 00111, ...}

O*1*

Any number of O’s followed by any number of 1’s

Examples

Oul)oOoulo

(O*1*)*

Examples

Oul)oOoulo

{0000, 0010, 1000, 1010}

(O*1*)*

All binary strings

Examples

(Ou1)*0110(0uU 1)*

(00U 11)* (01010 LU 10001) (O U 1)*

Examples

(Ou1)*0110(0uU 1)*

Binary strings that contain “0110”

(00U 11)* (01010 LU 10001) (O U 1)*

Binary strings that begin with pairs of characters
followed by “01010” or “10001”

Regular Expressions in Practice

« Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

 Usedin grep, a program that does pattern matching
searches in UNIX/LINUX

e Pattern matching using regular expressions is an essential
feature of PHP

* We can use regular expressions in programs to process
strings!

Regular Expressions in Java

* Pattern p = Pattern.compile("a*b");
 Matcher m = p.matcher("aaaaab");

* boolean b = m.matches();
[01] aOoral ~startofstring $ end of string
[0-9] anysingledigit \. period \, comma \- minus
any single character

ab a followed by b (AB)
(alb) aorb (A U B)
a? zero or one of a (AU E€)
a* zero or more of a A*

a+ one or more of a AA*

* eg AI\=-+1?2[0-91*(\.]|\,)?[0-9]+$
General form of decimal number e.g. 9.12 or -9,8 (Europe)

