CSE 311: Foundations of Computing
Lecture 16: Recursively Defined Sets \& Structural Induction

- HW 5 solutur in sectin tomosrow
- Revien Sersin Tomanow:6:30 pm Siey 134

Tomanar : Vnlog Quertow!

- Midtewn Friday:: Bong writry idistriment. DON'TERAFE

Last class: Recursive Definition of Sets

Recursive definition of set S

- Basis Step: $0 \in S$
- Recursive Step: If $x \in S$, then $x+2 \in S$
- Exclusion Rule: Every element in S follows from the basis step and a finite number of recursive steps.

$S=\{$ even natural numbers $\}$

We need the exclusion rule because otherwise $S=\mathbb{N}$ would satisfy the other two parts. However, we won't always write it down on these slides.

Last class: Recursive Definitions of Sets

Basis: $\quad 6 \in S, 15 \in S$
Recursive: If $x, y \in S$, then $x+y \in S$

$$
S=\{6,12,15,18,21, \ldots\}
$$

Basis:
$[1,1,0] \in S,[0,1,1] \in S$
Recursive: If $[x, y, z] \in S$, then $[\alpha x, \alpha y, \alpha z] \in S$ for any $\alpha \in \mathbb{R}$
If $\left[x_{1}, y_{1}, z_{1}\right] \in S$ and $\left[x_{2}, y_{2}, z_{2}\right] \in S$, then $\left[x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right] \in S$.
$S=\left\{\right.$ plane in \mathbb{R}^{3} spanned by $[1,1,0]$ and $\left.[0,1,1]\right\}$
Number of form 3^{n} for $\mathrm{n} \geq 0$:
Basis: $1 \in S$
Recursive: If $x \in S$, then $3 x \in S$.

Recursive Definitions of Sets: General Form

Recursive definition

- Basis step: Some specific elements are in S
- Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S.
- Exclusion rule: Every element in S follows from the basis step and a finite number of recursive steps

Strings

- An alphabet Σ is any finite set of characters e). $\Sigma=\{0,1\} \quad \Sigma=\{a, b, \ldots, z\} \quad \Sigma=A S C$ tr $\quad \Sigma=u n \operatorname{ICODF}$
- The set Σ^{*} of strings over the alphabet Σ is defined by
- Basis: $\varepsilon \in \Sigma^{*}$ (ε is the empty string $w /$ no chars)
- Recursive: if $\overparen{w \in \Sigma^{*}}, \overparen{a \in \Sigma}$, then $\widehat{w a} \in \Sigma^{*}$
$\left\{0,13^{*}\right.$ binary of althing/

$$
\begin{array}{rl}
\varepsilon-0 & =00 \\
\lambda_{1} & 01 \\
& 10 \\
10
\end{array}
$$

Finite leapt

Palindromes

Palindromes are strings that are the same backwards and forwards

Basis:

ε is a palindrome and any $a \in \Sigma$ is a palindrome

Recursive step:
If p is a palindrome then apa is a palindrome for every $a \in \Sigma$

$$
\begin{aligned}
& t \text { oto rotor } \\
& \varepsilon \text { ee deed }
\end{aligned}
$$

All Binary Strings with no 1's before 0's

All Binary Strings with no 1's before 0's

Basis:
$\varepsilon \in S$
Recursive:
If $x \in S$, then $0 x \in S$
If $x \in S$, then $x \in S$

Functions on Recursively Defined Sets (on Σ^{*})
Length:

$$
\left.\begin{array}{l}
\operatorname{len}(\varepsilon)=0 \\
\operatorname{len}(w a)=1+\operatorname{len}(w) \text { for } w \in \Sigma^{*}, a \in \Sigma
\end{array}\right]
$$

Reversal:

$$
\begin{aligned}
& \varepsilon^{R}=\varepsilon \\
& (w a)^{R}=a w^{R} \text { for } w \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

$$
\begin{aligned}
(110)^{R} & =0(11)^{R} \\
& =011^{R} \\
& =011 \varepsilon^{R} \\
& =011 \varepsilon=011
\end{aligned}
$$

Concatenation:

$$
\begin{aligned}
& x \bullet \varepsilon=x \text { for } x \in \Sigma^{*} \\
& x \bullet w a=(x \bullet w) \text { for } x \in \Sigma^{*}, a \in \Sigma, w \in \Sigma^{*}
\end{aligned}
$$

Number of c's in a string:

$$
\begin{aligned}
& \#_{c}(\varepsilon)=0 \\
& \#_{c}(w c)=\#_{c}(w)+1 \text { for } w \in \Sigma^{*} \\
& \#_{c}(w a)=\#_{c}(w) \text { for } w \in \Sigma^{*}, a \in \Sigma, a \neq c
\end{aligned}
$$

Rooted Binary Trees

- Basis: - is a rooted binary tree
- Recursive step:

Defining Functions on Rooted Binary Trees

- size(\cdot •) $=1$
- $\operatorname{size}(\overbrace{i=1})=1+\operatorname{size}\left(\mathrm{T}_{1}\right)+\operatorname{size}\left(\mathrm{T}_{2}\right)$
- height(\cdot) $=0$

Structural Induction

How to prove $\forall x \in S, P(x)$ is true:
Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that $P(w)$ holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Structural Induction

How to prove $\forall x \in S, P(x)$ is true:
Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step. Prove that $P(w)$ holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of structural induction:

Recursive definition of \mathbb{N}
Basis: $0 \in \mathbb{N}$
Recursive step: If $k \in \mathbb{N}$ then $k+1 \in \mathbb{N}$

Structural induction follows from ordinary induction:

Define $Q(n)$ to be "for all $x \in S$ that can be constructed in at most n recursive steps, $P(x)$ is true."

- Let S be given by...
- Basis: $6 \in S ; 15 \in S$;
- Recursive: if $x, y \in S$ then $x+y \in S$.

Claim: Every element of S is divisible by 3.

1. $P(x)$ is " x is divisible by 3 ". We prove
2. Dale Gale: 316 ad 3115 so $P(6), P(15)$ are ba
3. IH.. Avame that $3 \mid x$ and $31 y$ for me auhitry $x, y \in S$
4: I'S. \quad y IH $x=3 h$ an $y=3 l$ for me inter

$$
\begin{aligned}
& \therefore x+y=3 k+7 l=3 \text { (kl) }
\end{aligned}
$$

Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$ then $x+y \in S$

Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true
3. Inductive Hypothesis: Suppose that $P(x)$ and $P(y)$ are true for some arbitrary $x, y \in S$
4. Inductive Step: Goal: Show $P(x+y)$

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$ then $x+y \in S$

Claim: Every element of S is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true
3. Inductive Hypothesis: Suppose that $P(x)$ and $P(y)$ are true for some arbitrary $x, y \in S$
4. Inductive Step: Goal: Show $P(x+y)$

Since $P(x)$ is true, $3 \mid x$ and so $x=3 m$ for some integer m and since $P(y)$ is true, $3 \mid y$ and so $y=3 n$ for some integer n.
Therefore $x+y=3 m+3 n=3(m+n)$ and thus $3 \mid(x+y)$.
Hence $P(x+y)$ is true.
5. Therefore by induction $3 \mid x$ for all $x \in S$.

Basis: $6 \in S ; 15 \in S$;
Recursive: if $x, y \in S$ then $x+y \in S$

Claim: $\operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$
Let $\mathrm{P}(\mathrm{y})$ be "len $(\mathrm{x} \bullet \mathrm{y})=\operatorname{len}(\mathrm{x})+\operatorname{len}(\mathrm{y})$ for all $\mathrm{x} \in \Sigma^{*}$ ".
We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural induction.
Bye (are: $y=\varepsilon \quad \operatorname{len}(x-\varepsilon)=\operatorname{lin}(x)$ bs def" of,

$$
\begin{aligned}
& =\operatorname{len}(x)+0 \\
& =\operatorname{len}(x)+\operatorname{lec}(\varepsilon) \text { hr dell of } \\
& \therefore P(\varepsilon) \text { is then }
\end{aligned}
$$

Ind. Hypos:

Claim: $\operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$
Let $P(y)$ be "len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x \in \Sigma^{* "}$.
We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural induction.
Base Case: $y=\varepsilon$. For any $x \in \Sigma^{*}$, len $(x \bullet \varepsilon)=\operatorname{len}(x)=\operatorname{len}(x)+\operatorname{len}(\varepsilon)$ since len $(\varepsilon)=0$. Therefore $P(\varepsilon)$ is true
Ind hep: Suppose that $p / w)$ is true for la re curb try west $(\operatorname{len}(x \cdot \omega)=\operatorname{len}(x)+(\operatorname{len}(w))$
Snot Sty: Goal: Show $P(\omega a)$ is tran troll $a \in$
$\operatorname{len}(x+\infty a)=\operatorname{len}((x-w) a)$ by eth of :
y is whirs $=1+1 \mathrm{ae}(x-w)$ by def of leer $=1+\operatorname{loc}(x) y \operatorname{loc}(\omega)$ ks fy.
$=1 \operatorname{en}(x)+1+\operatorname{len}(w)$

$$
\begin{aligned}
& \therefore P(w d)=\operatorname{lec}(x)+\operatorname{lec}(w a) k_{4} d \operatorname{det} \text { of/w }
\end{aligned}
$$

Claim: $\operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $P(y)$ be "len $(x \cdot y)=\operatorname{len}(x)+l e n(y)$ for all $x \in \Sigma^{* "}$.
We prove $\mathrm{P}(\mathrm{y})$ for all $\mathrm{y} \in \Sigma^{*}$ by structural induction.
Base Case: $y=\varepsilon$. For any $x \in \Sigma^{*}, \operatorname{len}(x \cdot \varepsilon)=\operatorname{len}(x)=\operatorname{len}(x)+\operatorname{len}(\varepsilon)$ since len $(\varepsilon)=0$. Therefore $P(\varepsilon)$ is true
Inductive Hypothesis: Assume that $\mathrm{P}(\mathrm{w})$ is true for some arbitrary $w \in \Sigma^{*}$
Inductive Step: Goal: Show that $\mathrm{P}(\mathrm{wa})$ is true for every a $\in \Sigma$

Claim: $\operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $\mathrm{P}(\mathrm{y})$ be "len $(\mathrm{x} \cdot \mathrm{y})=\operatorname{len}(\mathrm{x})+\operatorname{len}(\mathrm{y})$ for all $\mathrm{x} \in \Sigma^{* "}$.
We prove $\mathrm{P}(\mathrm{y})$ for all $\mathrm{y} \in \Sigma^{*}$ by structural induction.
Base Case: $y=\varepsilon$. For any $x \in \Sigma^{*}, \operatorname{len}(x \cdot \varepsilon)=\operatorname{len}(x)=\operatorname{len}(x)+\operatorname{len}(\varepsilon)$ since len $(\varepsilon)=0$. Therefore $P(\varepsilon)$ is true
Inductive Hypothesis: Assume that $\mathrm{P}(\mathrm{w})$ is true for some arbitrary $w \in \Sigma^{*}$
Inductive Step: Goal: Show that $\mathrm{P}(\mathrm{wa})$ is true for every a $\in \Sigma$
Let $a \in \Sigma$. Let $x \in \Sigma^{*}$. Then len $(x \bullet w a)=\operatorname{len}((x \bullet w) a)$ by defn of \bullet

$$
\begin{aligned}
& =\operatorname{len}(x \cdot w)+1 \text { by defn of len } \\
& =\text { len }(x)+\operatorname{len}(w)+1 \text { by I.H. } \\
& =\operatorname{len}(x)+\operatorname{len}(w a) \text { by defn of len }
\end{aligned}
$$

Therefore len($x \bullet w a$) $=\operatorname{len}(x)+\operatorname{len}(w a)$ for all $x \in \Sigma^{*}$, so $P(w a)$ is true.
So, by induction len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

