CSE 311: Foundations of Computing

Lecture 15: Recursion \& Strong Induction Applications: Fibonacci \& Euclid

More Recursive Definitions

Suppose that $h: \mathbb{N} \rightarrow \mathbb{R}$.
Then we have familiar summation notation:
$\sum_{i=0}^{0} h(i)=h(0)$
$\sum_{i=0}^{n+1} h(i)=h(n+1)+\sum_{i=0}^{n} h(i)$ for $n \geq 0$

There is also product notation:
$\prod_{i=0}^{0} h(i)=h(0)$
$\prod_{i=0}^{n+1} h(i)=h(n+1) \cdot \prod_{i=0}^{n} h(i)$ for $n \geq 0$

Fibonacci Numbers

$$
\begin{aligned}
& f_{0}=0 \\
& f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq 2
\end{aligned}
$$

Strong Inductive Proofs In 5 Easy Steps

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq b$ by strong induction."
2. "Base Case:" Prove $P(b)$
3. "Inductive Hypothesis:

Assume that for some arbitrary integer $k \geq b$,
$P(j)$ is true for every integer j from b to $k "$
4. "Inductive Step:" Prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. (that $P(b), \ldots, P(k)$ are true) and point out where you are using it.
(Don't assume $P(k+1)$!!)
5. "Conclusion: $P(n)$ is true for all integers $n \geq b$ "

Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

$$
\begin{aligned}
& \boldsymbol{f}_{\mathbf{0}}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{\boldsymbol{n}}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } \boldsymbol{n} \geq \mathbf{2}
\end{aligned}
$$

Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n}$ ". We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 0$ by strong induction.
2. Base Case: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.

$$
\begin{aligned}
& \boldsymbol{f}_{\mathbf{0}}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{\boldsymbol{n}}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } \boldsymbol{n} \geq \mathbf{2}
\end{aligned}
$$

Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n}$ ". We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 0$ by strong induction.
2. Base Case: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0, P(j)$ is true for every integer j from 0 to k.
4. Inductive Step: Goal: Show $\mathrm{P}(\mathrm{k}+1)$; that is, $\mathrm{f}_{\mathrm{k}+1}<2^{\mathrm{k}+1}$

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad f_{1}=\mathbf{1} \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n}$ ". We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 0$ by strong induction.
2. Base Case: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0, P(j)$ is true for every integer j from 0 to k.
4. Inductive Step: Goal: Show $\mathrm{P}(\mathrm{k}+1)$; that is, $\mathrm{f}_{\mathrm{k}+1}<2^{\mathrm{k}+1}$

Case $\mathrm{k}+1=1$:
Case $k+1 \geq 2$:

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad f_{1}=\mathbf{1} \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n}$ ". We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 0$ by strong induction.
2. Base Case: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0, P(j)$ is true for every integer j from 0 to k.
4. Inductive Step: Goal: Show $P(k+1)$; that is, $f_{k+1}<2^{k+1}$

Case $k+1=1$: Then $f_{1}=1<2=2^{1}$ so $P(k+1)$ is true here.
Case $k+1 \geq 2$: Then $f_{k+1}=f_{k}+f_{k-1}$ by definition

$$
\begin{aligned}
& <2^{k}+2^{k-1} \text { by the IH since } k-1 \geq 0 \\
& <2^{k}+2^{k}=2 \cdot 2^{k}=2^{k+1}
\end{aligned}
$$

so $P(k+1)$ is true in this case.
These are the only cases so $P(k+1)$ follows.
5. Therefore by strong induction,

$$
f_{n}<2^{n} \text { for all integers } n \geq 0 . \quad \begin{aligned}
& f_{0}=0 \quad f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2}
\end{aligned} \text { for all } n \geq 2
$$

Bounding Fibonacci II: $f_{n} \geq 2^{n / 2-1}$ for all $n \geq 2$

$$
\begin{aligned}
& f_{0}=\mathbf{0} \quad f_{1}=\mathbf{1} \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

Bounding Fibonacci II: $f_{n} \geq 2^{n / 2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_{n} \geq 2^{n / 2-1}$ ". We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.
2. Base Case: $f_{2}=f_{1}+f_{0}=1$ and $2^{2 / 2-1}=2^{0}=1$ so $P(2)$ is true.

$$
\begin{aligned}
& f_{0}=\mathbf{0} \quad f_{1}=\mathbf{1} \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

Bounding Fibonacci II: $f_{n} \geq 2^{n / 2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_{n} \geq 2^{n / 2-1}$ ". We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.
2. Base Case: $f_{2}=f_{1}+f_{0}=1$ and $2^{2 / 2-1}=2^{0}=1$ so $P(2)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 2, P(j)$ is true for every integer j from 2 to k.
4. Inductive Step: Goal: Show $P(k+1)$; that is, $f_{k+1} \geq 2^{(k+1) / 2-1}$

No need for cases for the definition here:

$$
f_{k+1}=f_{k}+f_{k-1} \text { since } k+1 \geq 2
$$

Now just want to apply the IH to get $P(k)$ and $P(k-1)$:
Problem: Though we can get $P(k)$ since $k \geq 2$,
$k-1$ may only be 1 so we can't conclude $P(k-1)$
Solution: Separate cases for when $k-1=1$ (or $k+1=3$).

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{\boldsymbol{n}}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } \boldsymbol{n} \geq \mathbf{2}
\end{aligned}
$$

Bounding Fibonacci II: $f_{n} \geq 2^{n / 2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_{n} \geq 2^{n / 2-1}$ ". We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.
2. Base Case: $f_{2}=f_{1}+f_{0}=1$ and $2^{2 / 2-1}=2^{0}=1$ so $P(2)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 2, P(j)$ is true for every integer j from 2 to k.
4. Inductive Step: Goal: Show $P(k+1)$; that is, $f_{k+1} \geq 2^{(k+1) / 2-1}$

Case $\mathrm{k}=2$:
Case $k \geq 3$:

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{n}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

Bounding Fibonacci II: $f_{n} \geq 2^{n / 2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_{n} \geq 2^{n / 2-1}$ ". We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.
2. Base Case: $f_{2}=f_{1}+f_{0}=1$ and $2^{2 / 2-1}=2^{0}=1$ so $P(2)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 2, P(j)$ is true for every integer j from 2 to k.
4. Inductive Step: Goal: Show $P(k+1)$; that is, $f_{k+1} \geq 2^{(k+1) / 2-1}$

Case $k=2$: Then $f_{k+1}=f_{3}=f_{2}+f_{1}=2 \geq 2^{1 / 2}=2^{3 / 2-1}=2^{(k+1) / 2-1}$
Case $k \geq 3$:

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{n}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

Bounding Fibonacci II: $f_{n} \geq 2^{n / 2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_{n} \geq 2^{n / 2-1}$ ". We prove that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Case: $f_{2}=f_{1}+f_{0}=1$ and $2^{2 / 2-1}=2^{0}=1$ so $P(2)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 2, P(j)$ is true for every integer j from 2 to k.
4. Inductive Step: Goal: Show $P(k+1)$; that is, $f_{k+1} \geq 2^{(k+1) / 2-1}$

Case $k=2$: Then $f_{k+1}=f_{3}=f_{2}+f_{1}=2 \geq 2^{1 / 2}=2^{3 / 2-1}=2^{(k+1) / 2-1}$
Case $k \geq 3: \quad f_{k+1}=f_{k}+f_{k-1}$ by definition

$$
\begin{aligned}
& \geq 2^{k / 2-1}+2^{(k-1) / 2-1} \text { by the IH since } k-1 \geq 2 \\
& \geq 2^{(k-1) / 2-1}+2^{(k-1) / 2-1}=2^{(k-1) / 2}=2^{(k+1) / 2-1}
\end{aligned}
$$

So $P(k+1)$ is true in both cases.
5. Therefore by strong induction, $f_{n} \geq 2^{n / 2-1}$ for all integers $n \geq 0$.

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{n}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

An alternative Strong Inductive Proof Layout

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq b$ by strong induction."
2. "Base Cases:" Prove $P(b), P(b+1), \ldots, P(c)$
3. "Inductive Hypothesis:

Assume that for some arbitrary integer $k \geq$
$P(j)$ is true for every integer j from b to $k "$
4. "Inductive Step:" Prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. (that $P(b), \ldots, P(k)$ are true) and point out where you are using it.
(Don't assume $P(k+1)$!!)
5. "Conclusion: $P(n)$ is true for all integers $n \geq b$ "

Alternative II: $f_{n} \geq 2^{n / 2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_{n} \geq 2^{n / 2-1}$ ". We prove that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Cases $(n=2,3): f_{2}=f_{1}+f_{0}=1$ and $2^{2 / 2-1}=2^{0}=1$ so $P(2)$ is true. Also $f_{3}=f_{2}+f_{1}=2 \geq 2^{1 / 2}=2^{3 / 2-1}$ so $P(3)$ is true
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 3, P(j)$ is true for every integer j from 2 to k.
4. Inductive Step: Goal: Show $P(k+1)$; that is, $f_{k+1} \geq 2^{(k+1) / 2-1}$

Now $\quad f_{k+1}=f_{k}+f_{k-1}$ by definition

$$
\begin{aligned}
& \geq 2^{k / 2-1}+2^{(k-1) / 2-1} \text { by the IH since } k-1 \geq 2 \\
& \geq 2^{(k-1) / 2-1}+2^{(k-1) / 2-1}=2^{(k-1) / 2}=2^{(k+1) / 2-1}
\end{aligned}
$$

So $P(k+1)$ is true.
5. Therefore by strong induction, $f_{n} \geq 2^{n / 2-1}$ for all integers $n \geq 0$.

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{n}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

Bounding Fibonacci II: $f_{n} \geq 2^{n / 2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_{n} \geq 2^{n / 2-1}$ ". We prove that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Case: $f_{2}=f_{1}+f_{0}=1$ and $2^{2 / 2-1}=2^{0}=1$ so $P(2)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 2, P(j)$ is true for every integer j from 2 to k.
4. Inductive Step: Goal: Show $P(k+1)$; that is, $f_{k+1} \geq 2^{(k+1) / 2-1}$

Case $k=2$: Then $f_{k+1}=f_{3}=f_{2}+f_{1}=2 \geq 2^{1 / 2}=2^{3 / 2-1}=2^{(k+1) / 2-1}$
Case $k \geq 3: \quad f_{k+1}=f_{k}+f_{k-1}$ by definition

$$
\begin{aligned}
& \geq 2^{k / 2-1}+2^{(k-1) / 2-1} \text { by the IH since } k-1 \geq 2 \\
& \geq 2^{(k-1) / 2-1}+2^{(k-1) / 2-1}=2^{(k-1) / 2}=2^{(k+1) / 2-1}
\end{aligned}
$$

So $P(k+1)$ is true in both cases.
5. Therefore by strong induction, $f_{n} \geq 2^{n / 2-1}$ for all integers $n \geq 0$.

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{n}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes n steps for $\operatorname{gcd}(a, b)$ with $a \geq b>0$. Then, $a \geq f_{n+1}$.

An informal way to get the idea: Consider an n step gcd calculation starting with $r_{n+1}=a$ and $r_{n}=b$:

$$
\begin{aligned}
r_{n+1} & =q_{n} r_{n}+r_{n-1} \\
r_{n} & =q_{n-1} r_{n-1}+r_{n-2} \\
& \cdots \\
r_{3} & =q_{2} r_{2}+r_{1} \\
r_{2} & =q_{1} r_{1}
\end{aligned}
$$

For all $k \geq 2, r_{k-1}=r_{k+1} \bmod r_{k}$

Now $r_{1} \geq 1$ and each q_{k} must be ≥ 1. If we replace all the q_{k} 's by 1 and replace r_{1} by 1 , we can only reduce the r_{k} 's. After that reduction, $r_{k}=f_{k}$ for every k.

Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes n steps for $\operatorname{gcd}(a, b)$ with $a \geq b>0$. Then, $a \geq f_{n+1}$.

We go by strong induction on n.
Let $P(n)$ be " $g c d(a, b)$ with $a \geq b>0$ takes n steps $\rightarrow a \geq f_{n+1}$ " for all $n \geq 1$.
Base Case: $n=1$ If Euclid's Algorithm on a, b with $a \geq b>0$ takes 1 step, then $a=q_{1} b$ for some q_{1} and $a \geq b \geq 1=f_{2}$ and $P(1)$ holds

Induction Hypothesis: Suppose that for some integer $\mathrm{k} \geq 1, \mathrm{P}(\mathrm{j})$ is true for all integers j s.t. $1 \leq j \leq k$

Inductive Step: We want to show: if $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ with $\mathrm{a} \geq \mathrm{b}>0$ takes $\mathrm{k}+1$ steps, then $a \geq f_{k+2}$.

Running time of Euclid's algorithm

Induction Hypothesis: Suppose that for some integer $\mathrm{k} \geq 1, \mathrm{P}(\mathrm{j})$ is true for all integers j s.t. $1 \leq \mathrm{j} \leq \mathrm{k}$
Inductive Step: We want to show: if $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ with $\mathrm{a} \geq \mathrm{b}>0$ takes $\mathrm{k}+1$ steps, then $\mathrm{a} \geq \mathrm{f}_{\mathrm{k}+2}$.
Now if $k+1=2$, then Euclid's algorithm on a and b can be written as

$$
\begin{aligned}
a & =q_{2} b+r_{1} \\
b & =q_{1} r_{1} \\
\text { and } r_{1} & >0 .
\end{aligned}
$$

Also, since $a \geq b>0$ we must have $q_{2} \geq 1$ and $b \geq 1$.
So $a=q_{2} b+r_{1} \geq b+r_{1} \geq 1+1=2=f_{3}=f_{k+2}$ as required.

Running time of Euclid's algorithm

Induction Hypothesis: Suppose that for some integer $\mathrm{k} \geq 1, \mathrm{P}(\mathrm{j})$ is true for all integers j s.t. $1 \leq \mathrm{j} \leq \mathrm{k}$
Inductive Step: We want to show: if $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ with $\mathrm{a} \geq \mathrm{b}>0$ takes $\mathrm{k}+1$ steps, then $\mathrm{a} \geq \mathrm{f}_{\mathrm{k}+2}$.
Next suppose that $k+1 \geq 3$ so for the first 3 steps of Euclid's algorithm on a and b we have

$$
\begin{aligned}
& a=q_{k+1} b+r_{k} \\
& b=q_{k} r_{k}+r_{k-1} \\
& r_{k}=q_{k-1} r_{k-1}+r_{k-2}
\end{aligned}
$$

and there are $k-2$ more steps after this. Note that this means that the $\operatorname{gcd}\left(b, r_{k}\right)$ takes k steps and $\operatorname{gcd}\left(r_{k}, r_{k-1}\right)$ takes $k-1$ steps and $b>r_{k}>r_{k-1}$. So since $k, k-1 \geq 1$ by the IH we have $b \geq f_{k+1}$ and $r_{k} \geq f_{k}$. Also, since $a \geq b$ we must have $q_{k+1} \geq 1$.

So $a=q_{k+1} b+r_{k} \geq b+r_{k} \geq f_{k+1}+f_{k}=f_{k+2}$ as required.

Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes n steps for $\operatorname{gcd}(a, b)$ with $a \geq b>0$. Then, $a \geq f_{n+1}$.

Why does this help us bound the running time of Euclid's Algorithm?

We already proved that $f_{n} \geq 2^{n / 2-1}$ so $f_{n+1} \geq 2^{(n-1) / 2}$
Therefore: if Euclid's Algorithm takes n steps
for $\operatorname{gcd}(a, b)$ with $a \geq b>0$
then $a \geq 2^{(n-1) / 2}$
so $(n-1) / 2 \leq \log _{2} a$ or $n \leq 1+2 \log _{2} a$
i.e., \# of steps \leq twice the \# of bits in a.

Recursive Definition of Sets

Recursive Definition

- Basis Step: $0 \in S$
- Recursive Step: If $x \in S$, then $x+2 \in S$
- Exclusion Rule: Every element in S follows from basis steps and a finite number of recursive steps.

Recursive Definitions of Sets

Basis: $\quad 6 \in S, 15 \in S$
Recursive: If $x, y \in S$, then $x+y \in S$

Basis:
$[1,1,0] \in S,[0,1,1] \in S$
Recursive: If $[x, y, z] \in S$, then $[\alpha x, \alpha y, \alpha z] \in S$ for all $\alpha \in \mathbb{R}$
If $\left[x_{1}, y_{1}, z_{1}\right] \in S$ and $\left[x_{2}, y_{2}, z_{2}\right] \in S$, then
$\left[x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right] \in S$.

Powers of 3:

Recursive Definitions of Sets

Basis: $\quad 6 \in S, 15 \in S$
Recursive: If $x, y \in S$, then $x+y \in S$

Basis:
$[1,1,0] \in S,[0,1,1] \in S$
Recursive: If $[x, y, z] \in S$, then $[\alpha x, \alpha y, \alpha z] \in S$ for all $\alpha \in \mathbb{R}$
If $\left[x_{1}, y_{1}, z_{1}\right] \in S$ and $\left[x_{2}, y_{2}, z_{2}\right] \in S$, then
$\left[x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right] \in S$.

Powers of 3:
Basis: $1 \in S$
Recursive: If $x \in \mathbf{S}$, then $3 x \in \mathbf{S}$.

Recursive Definitions of Sets: General Form

Recursive definition

- Basis step: Some specific elements are in S
- Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S.
- Exclusion rule: Every element in S follows from basis steps and a finite number of recursive steps

Strings

- An alphabet Σ is any finite set of characters
- The set Σ^{*} of strings over the alphabet Σ is defined by
- Basis: $\varepsilon \in \Sigma$ (ε is the empty string)
- Recursive: if $w \in \Sigma^{*}, a \in \Sigma$, then $w a \in \Sigma^{*}$

Palindromes

Palindromes are strings that are the same backwards and forwards

Basis:
ε is a palindrome and any $a \in \Sigma$ is a palindrome

Recursive step:
If p is a palindrome then $a p a$ is a palindrome for every $a \in \Sigma$

All Binary Strings with no 1's before 0's

All Binary Strings with no 1's before 0's

Basis:
$\varepsilon \in S$
Recursive:
If $x \in S$, then $0 x \in S$
If $x \in S$, then $x 1 \in S$

Function Definitions on Recursively Defined Sets

Length:

$$
\begin{aligned}
& \operatorname{len}(\varepsilon)=0 \\
& \operatorname{len}(w a)=1+\operatorname{len}(w) \text { for } w \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Reversal:

$$
\begin{aligned}
& \varepsilon^{R}=\varepsilon \\
& (w a)^{R}=a w^{R} \text { for } w \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Concatenation:
$x \cdot \varepsilon=x$ for $x \in \Sigma^{*}$

$$
x \bullet w a=(x \bullet w) a \text { for } x \in \Sigma^{*}, a \in \Sigma
$$

